
2

The Traust Authorization Service

ADAM J. LEE and MARIANNE WINSLETT
University of Illinois at Urbana-Champaign
and
JIM BASNEY and VON WELCH
National Center for Supercomputing Applications

In recent years, trust negotiation has been proposed as a novel authorization solution for use in
open-system environments, in which resources are shared across organizational boundaries. Re-
searchers have shown that trust negotiation is indeed a viable solution for these environments by
developing a number of policy languages and strategies for trust negotiation that have desirable
theoretical properties. Further, existing protocols, such as TLS, have been altered to interact with
prototype trust negotiation systems, thereby illustrating the utility of trust negotiation. Unfortu-
nately, modifying existing protocols is often a time-consuming and bureaucratic process that can
hinder the adoption of this promising technology.

In this paper, we present Traust, a third-party authorization service that leverages the
strengths of existing prototype trust negotiation systems. Traust acts as an authorization bro-
ker that issues access tokens for resources in an open system after entities use trust negotiation
to satisfy the appropriate resource access policies. The Traust architecture was designed to al-
low Traust to be integrated either directly with newer trust-aware applications or indirectly with
existing legacy applications; this flexibility paves the way for the incremental adoption of trust
negotiation technologies without requiring widespread software or protocol upgrades. We discuss
the design and implementation of Traust, the communication protocol used by the Traust system,
and its performance. We also discuss our experiences using Traust to broker access to legacy re-
sources, our proposal for a Traust-aware version of the GridFTP protocol, and Traust’s resilience
to attack.

This research was supported by the National Center for Supercomputing Applications; by the NSF
under grants IIS-0331707, CNS-0325951, and CNS-0524695; and by Sandia National Laborato-
ries under grant DOE SNL 541065. Lee was also supported in part by a Motorola Center for
Communications graduate fellowship.
A preliminary version of this paper appears under the title “Traust: A Trust Negotiation-Based
Authorization Service for Open Systems” in the Proceedings of the 11th ACM Symposium on Ac-
cess Control Models and Technologies (SACMAT 2006).
Authors’ addresses: A.J. Lee and M. Winslett, Department of Computer Science, Univer-
sity of Illinois at Urbana-Champaign, 201 N. Goodwin Ave., Urbana, IL 61801; emails:
adamlee@cs.uiuc.edu, winslett@cs.uiuc.edu. J. Basney and V. Welch, National Center for Super-
computing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana,
IL 61801; emails: jbasney@ncsa.uiuc.edu, vwelch@ncsa.uiuc.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post
on servers, or to redistribute to lists requires prior specific permission and/or a fee. Permission
may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY
10121-0701, USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2008 ACM 1094-9224/2008/02–ART2 $5.00 DOI: 10.1145/1330295.1330297. http://doi.acm.org/

10.1145/1330295.1330297.

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 2 · A. J. Lee et al.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—access

controls, authentication; K.6.5 [Management of Computing and Information Systems]:
Security and Protection; C.2.3 [Computer-Communication Networks]: Network Operations

General Terms: Management, Security

Additional Key Words and Phrases: Attribute-based access control, credentials, trust negotiation

ACM Reference Format:

Lee, A.J., Winslett, M., Basney J., and Welch, V. 2008. The Traust authorization service.
ACM Trans. Inform. Syst. Secur. 11, 1, Article 2 (February 2008), 33 pages. DOI: 10.1145/
1330295.1330297. http://doi.acm.org/10.1145/1330295.1330297.

1. INTRODUCTION

Due to recent Internet trends—including peer-to-peer networks, grid com-
puting, and corporations restructuring as virtual organizations—large-scale
open systems in which resources are shared across organizational boundaries
are becoming ever more popular. Making intelligent authorization decisions
in these systems is a difficult task, as a potentially unbounded number of
users and resources exists in an environment with few guarantees regarding
preexisting trust relationships. Traditional authorization systems fail to work
in these systems either because they cannot scale to such a large user base or
because they make unrealistic assumptions about existing trust relationships
in the system. As open systems continue to gain popularity, it is critical that
the authorization problem be addressed.

Trust negotiation is an active area of research aiming to help solve the prob-
lems surrounding authorization in open systems. In trust negotiation, autho-
rization decisions are made based on the attributes of the entity requesting
access to a particular resource, rather than his or her identity. To determine
whether an entity should be granted access to a resource, the entity and re-
source provider conduct a bilateral and iterative exchange of policies and cre-
dentials (used to certify attributes) to incrementally establish trust in one an-
other.

To date, work in trust negotiation has focused primarily on the develop-
ment of languages and strategies for trust negotiation (from at least eight re-
search groups [Becker and Sewell 2004; Bertino et al. 2004; Bonatti and Sama-
rati 2000; Herzberg et al. 2000; Hess et al. 2004; Koshutanski and Massacci
2004b; Li and Mitchell 2003; Wang et al. 2004; Winsborough et al. 2000; Yu
et al. 2003]) and the embedding of trust negotiation into commonly used pro-
tocols [Hess et al. 2002]. These research efforts have shown that the flexible
nature of trust negotiation makes it a viable solution to the problem of autho-
rization in open systems. If software engineers could easily redesign all major
applications and protocols to support trust negotiation natively, the problem
of making authorization decisions in open systems would be solved. Unfortu-
nately, redesigning and restandardizing existing protocols is a time-consuming
process. To address this problem, we propose Traust, a stand-alone autho-
rization service that allows for the adoption of trust negotiation in a modular,

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 3

incremental, and grassroots manner, providing access to a wide range of re-
sources without requiring widespread software or protocol upgrades.

In our approach, a collection of Traust servers acts as brokers for the secu-
rity tokens needed to gain access to the resources located in a given security
domain. The format of these tokens is not restricted by Traust; tokens can be
of any format, including 〈username, password〉 pairs, Kerberos tickets, SAML
assertions, and X.509 certificates. Clients contact Traust servers and negotiate
for access tokens for logical or physical resources including network servers,
RPC methods, and organization-wide roles. The Traust service also provides
clients in the system with an opportunity to establish trust in the service prior
to the disclosure of their (potentially sensitive) resource access requests.

The Traust system was designed explicitly to meet the needs of large-scale
open systems. In particular, the Traust system:

—uses current prototype trust negotiation systems (such as Trust-X [Bertino
et al. 2004] or TrustBuilder [Winslett et al. 2002]) to allow clients to establish
bilateral trust with previously unknown resource providers on the fly and
negotiate for access to new system resources at runtime

—integrates transparently with newer, trust-aware resources while still main-
taining compatibility with and allowing increased access to legacy resources

—can broker access tokens in any format for any size security domain, ranging
from single hosts (e.g., in peer-to-peer systems) to entire organizations

—has policy maintenance overheads that scale independently of the number of
users in the system and the rates at which users join and leave the system

The rest of this article is organized as follows. In Section 2, we provide an
overview of trust negotiation and discuss related work in this area. Section 3
highlights the defining characteristics of open systems; these are then used to
derive several important requirements for authorization systems designed for
these environments. Sections 4 and 5 present the details of the Traust system
architecture and resource access protocol, respectively. In Section 6 we de-
scribe our implementation of the Traust system, comment on its performance,
and discuss our experiences using Traust to broker access to existing legacy
services. Section 7 illustrates the potential utility of our Traust client and
server APIs by proposing several modifications to the GridFTP data transfer
protocol that enable the tight integration of GridFTP with Traust. In Sec-
tion 8 we discuss how Traust meets the requirements identified in Section 3
and present a security analysis of the Traust system. We conclude and discuss
potential directions for future work in Section 9.

2. RELATED WORK

In this section, we first present an overview of trust negotiation and its appli-
cation to open systems. We then discuss current research efforts in this area
and their relationship to Traust.

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 4 · A. J. Lee et al.

Fig. 1. An example trust negotiation.

2.1 Trust Negotiation

Trust negotiation is a technique that has been proposed to address the scala-
bility limitations of existing authorization solutions when used in the context
of open systems. In trust negotiation, the access policy for a resource is written
as a declarative specification of the attributes that an authorized entity must
possess to gain access to the resource. In these systems, credentials and poli-
cies are also considered resources, so sensitive credentials and policies can be
protected by release policies of their own. In this way, an access request leads
to a bilateral and iterative disclosure of credentials and policies between the
user and resource provider. During this process, trust is established incremen-
tally as more and more sensitive credentials are exchanged.

Figure 1 shows an example trust negotiation in which a user, Alice, wishes
to gain access to a service provided by Bob. After Alice requests access to Bob’s
service, Bob discloses the access policy for his service, which states that, to
use the service, Alice must disclose a Visa cardholder credential. To protect
herself from identity theft, Alice is willing to disclose this credential only to
members of the Better Business Bureau (BBB), so rather than disclose her
Visa cardholder credential, Alice sends Bob a release policy to this effect. Bob
is in fact a member of the BBB and is willing to disclose this credential to
anyone. This satisfies Alice, who discloses her Visa cardholder credential to
Bob and is then granted access to Bob’s service.

Authorization systems based on trust negotiation are natural candidates for
use in open systems. Allowing resource access policies to be specified based on
the attributes of authorized users circumvents the scalability problems associ-
ated with maintaining identity- or organization-based ACLs as the size of the
system increases. In addition, trust negotiation allows mutually distrustful
parties to gain trust in one another incrementally and bilaterally in a privacy-
preserving manner.

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 5

2.2 Current Research

In recent years, trust negotiation has been an active area of research within
the security community. Recent research in trust negotiation has focused on
a number of important issues, including languages for expressing resource ac-
cess policies (e.g., Becker and Sewell [2004]; Bertino et al. [2003]; Herzberg
et al. [2000]; Li and Mitchell [2003]), protocols and strategies for conducting
trust negotiations or constructing distributed proofs (e.g., Bauer et al. [2005];
Bertino et al. [2004]; Koshutanski and Massacci [2004b, 2005]; Li et al. [2005];
Minami and Kotz [2005]; Winsborough and Li [2002]; Yu et al. [2003]), and
logics for reasoning about the outcomes of these negotiations (e.g., Bonatti and
Samarati [2000]; Winslett et al. [2005]). The foundational results presented in
these works have also been shown to be viable authorization solutions for real-
world systems through a series of implementations (such as those presented
in Bauer et al. [2005]; Bertino et al. [2004]; Koshutanski and Massacci [2004a];
Minami and Kotz [2006]; Winslett et al. [2002]), which demonstrate the utility
and practicality of these theoretical advances.

Implementations of trust negotiation typically provide a means of parsing
policies, handling certified attributes, and determining policy satisfaction. Ex-
isting trust negotiation implementations have been successfully embedded in
several commonly used applications and protocols (for a number of examples,
see Hess et al. [2002]; ISRL [2005]). Unfortunately, trust negotiation is in many
ways fundamentally different from previous authorization solutions, and inte-
grating these implementations with existing protocols has been a challeng-
ing process involving the modification of standardized protocols. A detailed
discussion of modifications made to TLS to support trust negotiation–based
authorization for the World Wide Web is presented by Hess and colleagues
[2002]. While this clearly demonstrates the utility of trust negotiation, re-
vising the protocols needed to access every resource used in open computing
systems would be a daunting task.

Traust was designed to provide an easier migration path for the adoption of
trust negotiation. Traust servers act as reference monitors that use existing
trust negotiation implementations to determine which users are authorized
to gain access to resources within their protection domains. Traust servers
issue access tokens, encoded in formats understood by existing applications,
to authorized users. Traust servers are authorization brokers that effectively
use trust negotiation to control access to legacy resources without requiring
protocol or software upgrades at these endpoints. Traust can also be integrated
directly with newer trust-aware applications, thereby making it a viable long-
term authorization solution for open systems rather than simply a short-term
fix. In the remainder of this paper, we discuss the design and implementation
of the Traust system.

3. DESIGN REQUIREMENTS

In designing Traust, our goal was not only to provide a migration path for the
integration of trust negotiation technologies into existing open systems but

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 6 · A. J. Lee et al.

also to provide a general-purpose authorization service that meets the needs
of open systems to the highest degree possible. To this end, we now explore
the defining characteristics of open systems. We then use these characteris-
tics to derive a set of functional requirements that should be satisfied by any
authorization solution designed for use in open systems.

In large-scale open systems, resource providers often wish to realize the
competitive advantages offered by allowing qualified outsiders access to some
of their resources under certain conditions. Due to the large number of poten-
tial users in these environments (e.g., all users with a valid Visa cardholder
credential), we cannot assume that resource providers will know a priori the
identities of all authorized clients who might possibly wish to access their re-
sources. In addition, we cannot assume that clients will know the set of re-
source providers that they might wish to interact with prior to the start of
these interactions. Given that there are compelling business reasons for re-
source providers to permit all possible qualified users to have access to their re-
sources, we can immediately recognize four important requirements that must
be satisfied by any authorization system designed for use in open computing
systems:

(1) Bilateral trust establishment. To enable effective resource sharing, we can-
not require preexisting trust relationships between clients and resource
providers; it is important to allow these entities to establish trust relation-
ships with one another at runtime.

(2) Runtime access policy discovery. In large-scale open systems, clients can-
not be expected to know a priori the access polices protecting resources of
interest. Authorization systems used in these environments should allow
clients to discover these policies as they become relevant.

(3) Privacy preservation. To protect clients and resource providers from ma-
licious entities, their interactions should reveal as little information as
possible. Entities should have some ability to control their disclosure of
sensitive information, including their objectives, policies, identities, and
attribute information.

(4) Scalability. Authorization systems used in open computing systems should
be scalable both in terms of maintenance overhead and size of protection
domain. Access policies should scale well in spite of a potentially un-
bounded number of users joining and leaving the system, while still main-
taining an appropriate level of expressiveness. To accommodate the het-
erogeneity of these systems, the service should be lightweight enough for
a single user (e.g., a peer-to-peer client) to deploy on her local machine, yet
robust enough to meet the demands of a large security domain.

In addition to these four requirements, it is important to include another,
more practical, property:

(5) Application support. Incorporating a new authorization service into ex-
isting open systems should not require a complete redesign of deployed
applications, protocols, or the network infrastructure. The authorization
system should support tight interaction with newer applications designed

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 7

Fig. 2. Traust system architecture.

to leverage its features explicitly but also remain accessible to clients who
wish to access legacy applications.

We do not make the claim that the above list of requirements is complete,
as completeness will always depend on the specific needs of a system’s par-
ticipants. However, a system embodying these five requirements will allow
resource providers to ensure that their resources (e.g., data, computational
clusters, or other services) are available to as many qualified users as possible
without compromising the security of the resource itself. Such a system will
also enable users to maximize their productivity by discovering resources at
runtime and dynamically gaining access to them. In Section 8.1, we revisit
these requirements and discuss how Traust satisfies each of them.

4. TRAUST SYSTEM ARCHITECTURE

Figure 2 illustrates the Traust system architecture. In the remainder of this
section, we describe each component in greater detail:

—Traust servers. In our system, Traust servers act as brokers for the access
rights to a set of resources in their security domain. A Traust server con-
tains a protocol interpreter that is responsible for carrying out the steps
of the Traust resource access protocol (discussed in Section 5.3) and has
some means of interacting with its trust negotiation agent (or agents). Each
Traust server also maintains a repository of access tokens used to grant
access to the resources that it protects; these tokens are issued to autho-
rized users who negotiate for access to the resources protected by the Traust
server.

—Traust clients. A Traust client is a process designed to acquire access
tokens for resources of interest to its owner. Like a Traust server, a
Traust client also contains a protocol interpreter and a means of con-
tacting its trust negotiation agent (or agents). For systems in which
resource requests could themselves be considered sensitive (e.g., requests
to gain access to classified data), Traust clients may have a local resource
classifier that can be used to determine the sensitivity classification

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 8 · A. J. Lee et al.

(or classifications) of a particular resource request and identify its corre-
sponding release policy (or policies). For maximum flexibility, a Traust
client use can gain access to a directly or by a Traust-aware application.
Further information regarding these two modes of operation is presented in
Section 6.

—Trust negotiation agents. Traust clients and servers require access to one
or more trust negotiation agents. A trust negotiation agent is respon-
sible for understanding the protocol used for trust negotiation (e.g., the
Trust-X [Bertino et al. 2004], TTG [Winsborough and Li 2002], or Trust-
Builder [Winslett et al. 2002] protocol) and carrying out trust negotiation
sessions on behalf of the client or server processes that own it. In addition, a
trust negotiation agent manages its owners’ attribute certificates and their
corresponding release policies.

Logically, a trust negotiation agent is part of the Traust client and server
applications, though it need not run on the same physical machine and
can be a shared resource for all of a user’s processes. This allows for in-
creased flexibility, as the overheads of running the agent can be shared
across multiple processes. Allowing a Traust server to have access to mul-
tiple trust negotiation agents also permits load balancing during periods of
high traffic.

—Access token repository. Each Traust server maintains a repository of ac-
cess tokens that can be used to gain access to the services that it pro-
tects. This repository is not a repository in the traditional sense, which
implies that it contains a static collection of tokens. Rather, the repos-
itory may contain static tokens but may also contain instructions on ob-
taining or creating new tokens at runtime. For instance, the repository
may create new local accounts used to access resources that it protects, ac-
quire Kerberos tickets, generate SAML assertions, or be delegated proxy
certificates from a MyProxy [Basney et al. 2005; Novotny et al. 2001]
server.

—Resources. Resources are the logical and physical objects that Traust servers
broker the access rights to. Some examples of resources include networks,
individual machines, services (e.g., Web sites or file servers), RPC methods,
Web services, or organization-wide role memberships.

5. PROTOCOL OVERVIEW

In this section, we present an overview of the communication protocol used in
the Traust system and discuss the ways in which Traust components inter-
act during the execution of this protocol. We focus our attention on message
semantics and permissible sequences of messages; the full details of the
Traust protocol, including message contents and formats, can be found in the
Appendix.

5.1 Session Security

All communications between a client and Traust server occur inside a
TLS [Dierks and Allen 1999] tunnel used to provide confidentiality and

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 9

integrity for the session. The tunnel itself is not used to provide any notion
of authentication or authorization; one or more trust negotiation sessions are
used for this purpose. We discuss these trust negotiation sessions in greater
detail in Section 5.3.

5.2 Message Types

Messages in the Traust protocol can be divided into two categories, functional
messages and trust establishment messages. The functional messages and
their replies allow a Traust client to make requests of a Traust server and be
provided with information in return. The current version of the Traust pro-
tocol supports two types of functional messages, get information and resource

request:

—Get information (GI). The GI message allows Traust clients to request pub-
lic metadata regarding a Traust server with which they have an established
connection. The server’s response to this message may include information
such as software and protocol versions, a “message of the day,” administra-
tive points of contact, or other site-specific information. A GI request may be
sent by the client only at the start of a Traust session.

—Resource request (RR). The RR message and its corresponding response em-
body the main functionality of the Traust service. RR messages contain a
URI and a series of optional 〈attribute, value〉 pairs describing a resource for
which the Traust client wishes to acquire access tokens. This naming system
is flexible enough to specify a wide variety of resources, including entire net-
works, enterprise-wide roles, or individual hosts, services, or method calls.
The server response to this message contains either a failure notification or
a collection of access tokens that can be used to gain access to the requested
resource.

To control the flow of sensitive information between clients and servers in
the system, Traust supports three trust establishment message types: initiate

trust negotiation, trust negotiation, and end trust negotiation:

—Initiate trust negotiation (ITN). This message serves as a flag to indicate that
a new trust negotiation session is about to begin. After receiving an ITN
message, the Traust client (or server) will forward subsequent messages to
one of its associated trust negotiation agent processes for processing until an
end trust negotiation message is received.

—Trust negotiation (TN). TN messages are used to encapsulate a trust nego-
tiation session carried out between the trust negotiation agent processes of
the Traust client and Traust server. The policies and credentials exchanged
between parties in the Traust system are encoded in the body of these mes-
sages. Several rounds of TN messages may be required for the initiating
party to determine whether an acceptable level of trust has been gained in
the responding party.

—End trust negotiation (ETN). The ETN message serves as a flag to indicate
that a trust negotiation session has just completed. On receiving an ETN

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 10 · A. J. Lee et al.

message, the receiver will cease forwarding subsequent messages to its trust
negotiation agent.

Next, we describe how these messages are ordered to form the communica-
tion protocol used in the Traust system.

5.3 Resource Access Protocol

At a high level, the Traust resource access protocol maps users’ attributes into
access tokens that are meaningful in the local security domain of the resource
that is to be accessed. This protocol takes place in five stages: local classifica-
tion, server trust establishment, request disclosure, client trust establishment,
and response.

Prior to establishing a connection to a Traust server, the user’s Traust client
is provided with the description of a resource with which the user wishes to ne-
gotiate for access. This description may be generated explicitly by the human
user (e.g., after reading a Web page describing how to gain access to a legacy
service protected by a Traust server) or generated on the fly by a client applica-
tion interacting with a Traust-aware resource. During the local classification

stage, this resource description is examined using a local content classifier to
determine its sensitivity classification or classifications. The Traust client then
maps these sensitivity classifications into release policies that will be used in
the server trust establishment phase.

During server trust establishment, indicated by the label A in Figure 3, the
Traust client initiates zero or more content-triggered trust negotiation ses-
sions [Hess et al. 2004] with the Traust server—one for each release policy
discovered during local classification. Alternatively, the client could initiate
a single negotiation using a new policy derived from some function of these
release policies. This process determines whether the Traust server is trust-
worthy enough to receive the resource request issued to the Traust client and
prevents inadvertent disclosure of sensitive requests to unauthorized Traust
servers.

Each trust negotiation session in the server trust establishment phase is ini-
tiated by the client sending an initiate trust negotiation message to the server.
The client’s trust negotiation agent then conducts an iterative exchange of
trust negotiation messages with the server’s trust negotiation agent, reporting
the results of this negotiation back to the Traust client. The Traust client ter-
minates this phase by sending an end trust negotiation message to the Traust
server. Should the client fail to establish trust in the server during this phase
of the protocol, the Traust client closes its connection with the server and re-
ports a failure to the user.

If the Traust client establishes trust in the server, the Traust session enters
the resource disclosure stage. At this point, the Traust client sends a resource
request message to the Traust server describing the resource that the user
wishes to access. This disclosure is indicated by the label B in Figure 3.

On receiving the Traust client’s Resource Request message, the Traust
server examines it to determine the access policy that protects the re-
quested resource. The server then begins the client trust establishment phase,

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 11

Fig. 3. The Traust resource access protocol.

indicated by the label C in Figure 3, by sending an initiate trust negotiation
message to the client. The Traust server’s trust negotiation agent then carries
out a negotiation with the client’s trust negotiation agent via an iterative ex-
change of trust negotiation messages. When the negotiation is over, the Traust
server sends an end trust negotiation message to the Traust client to indicate
this fact.

In the response phase, indicated by the label D in Figure 3, the Traust
server indicates the status of the resource access protocol. If the server failed
to establish trust in the client, the client is sent a failure notification in the
resource request response message. If the Traust server did establish trust
in the client, however, it obtains the access tokens needed for the client to
access the requested resource and passes these tokens to the client in the
resource request response message. Obtaining an access token could be as
simple as looking up a static token or could involve generating a new local
account or interacting with an external service (e.g., Kerberos, MyProxy, or
CAS [Pearlman et al. 2002]) to obtain the needed access tokens. To help

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 12 · A. J. Lee et al.

Fig. 4. A regular expression describing successful executions of the resource access protocol.

detect certain types of attacks, it is important to differentiate between valid
and invalid executions of the resource access protocol. Figure 4 is a regular
expression describing successful executions of the Traust resource access
protocol. The message abbreviations are those used in Section 5.2, and the
subscripts indicate whether a particular message was sent by the client (C)
or server (S). Note that we include the optional transmission of a get infor-
mation message and its response, though it was not discussed in this section.
Any sequence of messages not described by this expression is considered in-
valid; a correctly functioning participant in the resource access protocol should
immediately close any connection on which an invalid execution has been
detected.

6. IMPLEMENTATION

In this section, we discuss our implementation of the Traust system. In ad-
dition, we discuss our experiences using Traust to broker access to legacy re-
sources (e.g., password-protected Web sites), comment on our proposal for a
Traust-aware GridFTP client and server, and address the performance of our
prototype implementation.

6.1 Implementation Details

We have developed a prototype implementation of the Traust service using the
Java programming language. We provide a client API that can be embedded
into applications that wish to interact directly with a Traust server. In addi-
tion, we have developed both command line and graphical Traust clients that
allow human users to interact with a Traust server to request access tokens for
legacy services whose clients do not natively support Traust. We also provide
an extensible resource classification API that allows users to develop custom
request sensitivity classifiers. Because defining these types of classifiers can
be difficult, a user’s organization (e.g., his or her employer or credential issuer)
is likely to supply the classifiers for sensitive requests. In our implementation,
a resource classifier based on substring matching is used by default.

Our server implementation provides an extensible API that can be used to
interface with a wide variety of access token repositories. We have developed
a flexible token repository that allows the server to obtain the tokens needed
to gain access to a given resource by either (1) gaining access to tokens stored
directly in the repository, (2) referencing files located on the local file system, or
(3) interfacing with external processes. We have used the latter mechanism to
generate one-time-use passwords, delegate X.509 proxy certificates, and create
temporary local accounts.

Both the client and the server currently use trust negotiation agents based
on the TrustBuilder framework for trust negotiation [Winslett et al. 2002].

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 13

TrustBuilder currently supports the use of X.509 attribute certificates for
credentials and the IBM Trust Policy Language [Herzberg et al. 2000] for
access policy specification, with future support for other policy languages
and credential types. TrustBuilder has been successfully integrated with
a number of protocols and applications [Hess et al. 2004, 2002; Ryutov
et al. 2005], making it a good choice for use in the Traust system. We do
note, however, that TrustBuilder does not currently support dynamic trust
chain construction, in which mutually trusted third parties are discovered
at runtime (e.g., as in Li et al. [2003]). This limits the applicability of our
implementation to situations in which such trusted credential issuers are
mutually agreed on by both parties at the start of the negotiation.

6.2 Usage with Legacy Resources

In some computing environments, it is considered acceptable to require that
clients manually acquire resource access tokens prior to using networked ser-
vices. For instance, at many universities, users wishing to have access to stu-
dent records must first acquire a Kerberos ticket using a stand-alone client
application (e.g., kinit). For these types of environments, we have developed
command line and graphical Traust clients that allow users to manually re-
quest access tokens for legacy services that do not natively support Traust
interaction. Figure 5 shows a screen shot of our graphical Traust client.

As an example of how Traust might be used in this type of environment,
consider the case of a rescue dog handler who hears a newscast about a build-
ing that has collapsed and wishes to help in the recovery effort. The newscast
gives the URL of a Web-based information portal that will be used to coordi-
nate the recovery effort. The user browses to this Web site and is presented
with a login form and resource descriptor to pass into his Traust client that will
allow him to negotiate for a temporary login and password to the portal. The
Traust interaction allows the client to establish trust in the server (e.g., that
the server is a state-sponsored disaster response coordinator, not a hoax) and
allows the server to verify the user’s credentials (e.g., that he is a certified res-
cue dog handler with up-to-date vaccinations, not a news reporter looking for
a hot story). The Traust server then returns a temporary login and password
for the Web site, which the client application displays to the user.

We have built a testbed information portal for this application and used
Traust to allow previously unknown, but qualified, users to obtain authoriza-
tion to access the information contained within. In addition, Traust has been
used in a similar fashion to issue X.509 proxy certificates that control access
to a file server.

6.3 Traust-Aware Resources

In addition to using Traust to control access to legacy resources, we have devel-
oped client and server APIs to enable the development of services that support
Traust natively. These applications can embed Traust interactions in their
access protocols, allowing users’ client applications to carry out any neces-
sary Traust interactions without requiring the user to initiate this process.

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 14 · A. J. Lee et al.

Fig. 5. The graphical Traust client.

In Section 7, we demonstrate the potential utility of this type of integration by
proposing two modifications to GridFTP, a secure mass data transfer protocol
used heavily in the context of grid computing.

6.4 Performance

We now comment on the performance of our implementation in two represen-
tative usage scenarios. All averages reported in this section were calculated
over ten trials executed between a 2.8GHz Pentium 4 with 1GB RAM running
Windows XP SP2 and a 2.5GHz Pentium 4 with 512MB RAM running Linux.
In the first scenario, the client releases his or her resource request to the
Traust server without requiring a trust negotiation. The Traust server then
initiates a single-round trust negotiation with the client in which the client
demonstrates proof of ownership of one attribute certificate. This case is
indicative of Traust interactions that might be seen in corporate environments
where users are asked to show their digital employee ID card or role certificate
to gain access to a particular resource. We ran this scenario across our de-
partment’s network at midday and found that, on average, it executed in 2.77
seconds with a standard deviation of 0.18 seconds. The two major components
of this time are connection establishment (1.12 seconds) and creating the client
trust negotiation agent and carrying out the trust negotiation (1.33 seconds).

The second scenario uses the disaster response information portal discussed
in Section 6.2. In this scenario, the client is willing to disclose his access
request only to Traust servers that can prove that they are operated by a
state-sponsored disaster response coordinator, and he uses the server trust
establishment phase of the resource access protocol to enforce this. The Traust
server is able to prove ownership of an attribute credential indicating this fact,
which satisfies the client, who then discloses his request for access to the in-
formation portal.

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 15

Fig. 6. Details of the rescue dog Traust scenario. Multiple-message exchanges with details omit-
ted are denoted using dashed lines.

At this point, the server requests that the client prove that he is a certified
rescue dog handler, is over the age of 18 (by showing a state-issued driver’s
license), has a recent tetanus vaccination (the record of which is issued by a
state-certified board of health), and that his dog has a recent rabies vaccina-
tion (the record of which is issued by a state-certified county). In response
to this request, the client demonstrates proof of ownership of his rescue dog
handler certificate and discloses the release policies protecting his driver’s li-
cense and both vaccination records. The release policy protecting his driver’s li-
cense requires that the server disclose a privacy policy issued by an accrediting
organization, while the release policy protecting both vaccination records re-
quires that the server prove that it is operated by a department of some U.S.
state. The Traust server is willing to disclose this information, at which point
the client sends over the remaining credentials required by the server. The
details of this interaction are illustrated in Figure 6.

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 16 · A. J. Lee et al.

In all, these two trust negotiations took place over three rounds and in-
volved the disclosure of nine credentials (including supporting credentials for
certification chains). On average, this scenario executed in 4.04 seconds over
our department’s network at midday with a standard deviation of 0.12 sec-
onds. The main components of this time are connection establishment (1.12
seconds), creating the client trust negotiation agent and carrying out the first
negotiation (1.58 seconds), and the second trust negotiation (1.34 seconds).

Clearly, executing the Traust resource access protocol takes longer than
using a more traditional means of acquiring resource access tokens (e.g.,
obtaining a Kerberos ticket). However, this comparison means very little, as
traditional authorization systems cannot be used in open systems environ-
ments because the identities of authorized users may not be known a priori,
requiring users to resort to out-of-band methods to gain access (e.g., sending
written requests to resource providers). Additionally, the client used in these
tests created a new trust negotiation agent at each invocation, a process that
takes 0.93 seconds on average; configuring the client to use a stand-alone trust
negotiation agent would eliminate this overhead. Further, the TrustBuilder
system is a prototype framework for trust negotiation that has not been opti-
mized for performance. We have reason to believe that future research in trust
negotiation frameworks will lead to trust negotiation agents with much better
performance. In this case, the benefits of allowing previously unknown users
to negotiate for access to resources outweigh the modest cost of the negotiation.

Currently, studying the scalability of Traust as the number of concurrent
connections increases would have little value. The policy engines used by pro-
totype trust negotiation implementations such as TrustBuilder are highly un-
optimized and would skew any measured results. However, such a study would
be of value once high-performance policy evaluators such as CPOL [Borders
et al. 2005] are integrated with existing trust negotiation systems.

7. TRAUST INTEGRATION WITH GRIDFTP

In this section, we demonstrate one way in which the Traust service might be
tightly coupled with a Traust-aware protocol. Specifically, we show how to ex-
tend the GridFTP protocol [Allcock 2003] to support dynamic access credential
discovery via interaction with one or more Traust servers. Such tight integra-
tion allows users of the GridFTP server to obtain the credentials necessary to
gain access to data provided by the server at runtime and eliminate the need
for users to establish accounts on the server itself. Our primary design goal
was to use the existing GSI authentication mechanisms [Welch et al. 2003] as
much as possible to avoid unnecessary implementation costs.

7.1 The TRAUST Command

To facilitate the incorporation of Traust into GridFTP, we define a new
FTP [Postel and Reynolds 1985] command, TRAUST. To initiate a GridFTP ses-
sion supporting TRAUST interaction, the client opens an FTP connection to
the GridFTP server and then issues the command:

TRAUST

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 17

This command should be entered prior to logging in to the system. The
GridFTP server’s response to this command will be response code 200. The
body of this response will be as follows:

200-TRAUST <Traust server name or IP address>:<port>

200-<resource URI>

200-ATTRIB=(<attribute>,<value>) // zero or more

200 <authentication method>

In this response (which is a valid FTP response, as per Postel and Reynolds
[1985]), the port specification is optional and will be assumed to be 8162 when
not present. The <resource URI> is a URI [Berners-Lee et al. 2005] that can
be embedded in a Traust resource request command, and the optional ATTRIB
lines further specify the resource. At this point, the client contacts the Traust
server described in the first line of the GridFTP server’s 200 response and
requests access to the resource described on the second and third lines of the
200 response.

Should the exchange with the Traust server succeed, the Traust server will
then issue the client the credentials needed to log into the GridFTP server.
The client then uses the authentication method listed on the last line of the
GridFTP server’s response to the TRAUST command along with the newly
obtained credentials to log into the server. Acceptable authentication method
descriptions that can be embedded in the 200 response include “USERPASS”
and “GSI,” which represent the standard FTP username/password login and
GSI authentication, respectively.

7.2 Enabling Permission Changes During a GridFTP Session

Although the TRAUST command is useful for determining whether a given client
should be granted access to a particular GridFTP server, it will rarely be the
case that all clients authorized to access a particular server should have ac-
cess to all files stored on the server. To address this problem, we wish to allow
clients the ability to negotiate for new access rights dynamically as they tra-
verse the file system. This can be accomplished through the use of “access
hints” embedded in GridFTP server error messages.

For instance, if we would like to enforce access lists on a per-directory basis,
as in the Andrew file system [Morris et al. 1986], then the act of changing
directories might cause authorization errors. A client who issues a CWD or CDUP
command to the GridFTP server might be returned an error code 550 (access
denied). This message usually takes the following form:

550 Access Denied

Rather than returning the standard FTP error code 550, a GridFTP server
supporting the TRAUST command returns the following access denied message
with an embedded access hint:

550-TRAUST <Traust server name or IP address>:<port>

550-<resource URI>

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 18 · A. J. Lee et al.

500-ATTRIB=(<attribute>,<value>) // zero or more

550-<authentication method>

550 Access Denied

The <resource URI>, optional ATTRIB lines, and <authentication method>

fields above carry the same meaning as those returned in response to the
Traust command; again, the port specification is optional. This enhanced
error message will be interpreted by the client as an indicator that the current
request failed, though a successful interaction with the indicated Traust server
will lead to the access credentials necessary to allow the failed operation to
succeed. In this case, the client will take the following actions:

(1) The client’s Traust API is used to contact the indicated Traust server and
request access to the specified resource.

(2) If the Traust interaction is successful, the client will be issued new access
credentials by the Traust server that will allow access to the requested
directory.

(3) The client then uses the newly obtained credentials in a reauthentication
exchange with the GridFTP server initiated by using the GridFTP AUTH

command. This exchange will take place using the method specified in the
access hint provided to the client.

(4) The CWD or CDUP command can then be reissued and will succeed.

It is reasonable to assume that a good GridFTP client protocol interpreter
will automate steps 1 through 4 after receiving an error message containing
an access hint. In this case, the user of the GridFTP client would not need to
manually intervene to trigger any of the interactions with the Traust server
and would notice only a slight lag in the connection as the access credentials
are renegotiated. To enforce the directory level access controls discussed in
this section, servers will need to return error messages containing access hints
not only with failed CWD and CDUP commands but also with failed commands
that attempted to access files in directories other than the current working
directory (e.g., commands such as RETR, STOR, and LIST).

One of the interesting features of this approach is that access hints can be
embedded in any standard FTP error message. The client protocol interpreter
need only parse error responses for the “TRAUST” string to know that a Traust
interaction might possibly fix the error. This flexibility allows a GridFTP
server to enable access hints that can enforce a wide variety of authorization
policies on the server’s resources. For instance, because the server is free to
embed different access hints in RETR or STOR requests for the same file, this
system can be used to enforce different read and write access controls for a
single file or directory. This mechanism can, in turn, be used to enforce the
principle of least privilege [Saltzer and Schroeder 1975].

7.3 An Example Traust-Enabled GridFTP Session

A sample Traust-enabled GridFTP session is shown in Figure 7. Alice first uses
her GridFTP client to establish a connection to the server GridFTP.foo.org.

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 19

Fig. 7. A sample Traust-enabled GridFTP Session. Multiple-message exchanges with details
omitted are denoted using dashed lines.

Because Alice has never had access to this server before, her GridFTP client
issues the TRAUST command to determine the location of a Traust server
that can be used to negotiation for an access certificate to this GridFTP
server. The 200 response returned by the GridFTP server informs Alice’s
GridFTP client of the location of the Traust server used to broker access to
the GridFTP server (Traust.foo.org:8162) and the name of the resource for
the client to request access to in order to obtain login rights for the server
(gsiftp://gridftp.foo.org). Alice’s GridFTP client then uses the Traust
client API to negotiate with the Traust server; the end result of this inter-
action is that the Traust server issues Alice’s GridFTP client an X.509 proxy
certificate permitting login to the designated GridFTP server. The GridFTP
client then carries out a GSI AUTH exchange using this credential and is granted
access to the server. Alice then attempts to gain access to the /earthquake

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 20 · A. J. Lee et al.

directory on the server, but her access is denied. Her GridFTP client applica-
tion parses the embedded access hint from the 550 error response, negotiates
for permission to gain access to /earthquake, and reauthenticates to the server;
this entire privilege enhancement process takes place without intervention
from Alice. Alice can then continue her session with the GridFTP server.

The above example illustrates the flexibility that can be afforded by appli-
cations that interface natively with the Traust service. The introduction of
the TRAUST command to the GridFTP protocol specification, along with a slight
alteration of the semantics of error responses in certain circumstances, can
provide a previously unknown client with enough information to dynamically
acquire access tokens for the service at runtime without requiring active par-
ticipation by the human user of the system. The syntax of a 550 response re-
mains unchanged from that proposed by Postel and Reynolds [1985], thereby
making these changes transparent to clients not supporting native Traust
interaction. Although the relatively easy upgrade path demonstrated for
GridFTP is unlikely to exist for all legacy applications, it nonetheless demon-
strates that Traust can be coupled tightly with applications that wish to lever-
age its strengths. This type of compatibility is important to ensure not only
that Traust serves as a short-term solution for introducing the strengths of
trust negotiation to legacy environments but that it will remain a useful au-
thorization model in the long run.

8. DISCUSSION

In this section, we discuss the security properties of the Traust system. First,
we describe the ways in which Traust meets the needs of large-scale open sys-
tems by addressing each of the requirements presented in Section 3. We then
present an informal security analysis of Traust and address possible attacks
against the system.

8.1 Requirements Revisited

Section 3 introduced five requirements for authorization systems to be used in
open systems: bilateral trust establishment, runtime access policy discovery,
preservation of privacy, scalability, and application support. The Traust sys-
tem architecture and resource access protocol were designed to address these
goals from the start. Bilateral trust establishment and runtime access policy
discovery are attained through the use of trust negotiation in the server and
client trust establishment stages of the resource access protocol. To help pre-
serve privacy, these negotiations can leverage negotiation strategies that limit
the disclosure of sensitive credentials. In environments where some requests
themselves could be considered private, clients may also enforce their own re-
quest release policies. Traust’s use of trust negotiation implies that access
policies are specified in terms of the attributes that an authorized user must
possess, thus policy maintenance overheads scale independently of the number
of users joining and leaving the system. The performance of the Traust service
prototype is reasonable (roughly 4 seconds on average for a complex interac-
tion). Lastly, Traust integrates with both legacy and Traust-aware resources.

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 21

8.2 Security Evaluation

Though Traust adequately addresses the five functional requirements dis-
cussed in Section 3, these properties say very little about the security of the
system. In this section, we discuss the security properties of the Traust system
and address several potential attacks against Traust.

8.2.1 Session Security. In the Traust system, session security is provided
through the use of the TLS protocol. Dierks and Allen [1999], present a se-
curity analysis of the TLS protocol under the assumption of an active at-
tacker [Dolev and Yao 1983] with the ability to intercept, modify, delete, and
replay messages sent over the communication channel. In the case that the
public key of one party in the protocol is authenticated, the authors show that
the TLS channel is secure against man-in-the-middle attacks, thus the two
parties can be assured of the confidentiality and integrity of the messages
transmitted using TLS. In situations where a Traust server is run by an or-
ganization such as a university, research center, or corporation, the server can
be issued a certified public key much in the same way that World Wide Web
servers are issued certified keys today. In these cases, the security evalua-
tion presented by Dierks and Allen [1999] applies to the session security of
Traust.

In environments where neither the client nor the server has a certified
public key (e.g., peer-to-peer networks), the TLS protocol is vulnerable to
a man-in-the-middle attack during session establishment. The implication
of this attack is that an unauthorized third party can read and alter mes-
sages sent through the TLS tunnel, unknown to the client and server. The
SSH [Ylonen and Lonvick 2005] protocol is subject to the same such at-
tack, as it is rarely the case that SSH servers have certified public keys.
In SSH, the threat of this attack is usually mitigated by caching previ-
ously used public keys. In this way, unless the man-in-the-middle attack
occurs during the first connection between the client and server, it can be
detected, as the cached public key of the legitimate server and the pub-
lic key returned by the man-in-the-middle will not match. We argue that
the threat of this attack can be reasonably mitigated in Traust by us-
ing the same practices as are used in SSH. As in SSH, however, highly
sensitive noncertified public keys should be verified out-of-band to prevent
this attack. Given that it is possible to prevent man-in-the-middle at-
tacks against the TLS protocol, we argue that the security analysis pre-
sented by Dierks and Allen [1999] ensures that messages exchanged during
the Traust resource access protocol can be viewed only by their intended
recipients.

8.2.2 Ensuring Valid Attribute Certificates. A naive implementation of the
trust negotiation agents used in the Traust system leaves parties open to an
attack in which a malicious party can demonstrate “proof” of ownership for
attributes that it does not possess by conducting interleaved executions of the
resource access protocol with multiple parties. We now describe the attack

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 22 · A. J. Lee et al.

in greater detail and present a solution that eliminates the possibility of this
attack from the Traust system.

To illustrate this attack, consider the following example, in which Alice
is carrying out an execution of the Traust resource access protocol with
Mallory. Alice wishes to gain access to Mallory’s Music Warehouse so that she
can download songs to listen to during her commute to work. During the client
trust establishment stage of the resource access protocol, Mallory requests that
Alice submit her digital Visa card (presumably so that Mallory can bill Alice
for the music that she downloads) and demonstrate proof of ownership. To pro-
tect herself from identity theft, Alice is willing to disclose this credential only
to businesses who are members of the Better Business Bureau (BBB). Alice
sends this release policy to Mallory along with a challenge for him to sign us-
ing the private portion of his BBB credential. Mallory is not a member of the
BBB, though he wishes to trick Alice into believing that he is.

Mallory then opens a Traust connection to Bob’s Books. Bob runs a Traust
server to allow certain groups of users, such as school teachers, to negotiate for
access to discount coupons for the books that he sells. During the server trust
establishment phase of the resource access protocol, Mallory informs Bob that
he is willing to interact only with members of the Better Business Bureau and
submits Bob a challenge (Alice’s challenge!) to sign with the private portion
of his BBB credential. Bob is a member of the BBB and willingly signs the
challenge, returning it along with the public portion of his BBB credential to
Mallory. Mallory then closes his connection with Bob and forwards Bob’s BBB
credential and signed challenge to Alice, who is now convinced that Mallory is
a member of the BBB.

This attack is possible in the event that a naive implementation of the trust
negotiation agent has no means of associating an attribute credential with a
particular identity. That is, this attack is enabled not by Traust but by the
trust negotiation agent used by Traust. This attack can be prevented in prac-
tice, however, if parties form a loose notion of “session identity” by requiring a
binding between attribute credentials and the public key used to establish the
underlying TLS tunnel. To prevent the attack discussed above, we can require
that parties not sign the challenge sent by the other negotiating party directly.
Rather, the trust negotiation agent should first concatenate this challenge with
a hash of the public key that he or she used to establish the TLS tunnel used in
this interaction and then sign the resulting bit string. This prevents the sur-
reptitious forwarding of attribute credentials, as in the above example, as the
remote party can verify that the challenge was concatenated with the expected
public key hash prior to signing.

Note that the solution above does not prevent the collusion of malicious en-
tities who wish to pool their resources to appear as a single, more privileged
entity. Techniques such as hidden credentials and oblivious signature-based
envelopes [Holt et al. 2003; Li et al. 2003] can be used to prevent collusion,
though this system requires that parties know the identity used by the other
negotiating party to obtain their identity-based public keys. Another possi-
ble solution involves the use of attribute-based encryption [Sahai and Waters
2005], though this requires that all attributes of interest to the negotiation be

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 23

issued by the same authority. Unfortunately, this makes attribute-based en-
cryption unappealing in the open system environment for which Traust was
designed. Systems such as idemix [Camenisch and Herreweghen 2002] can
also be used to prevent this type of collusion, though at the expense of embed-
ding a master secret into each credential. The difficulty of solving the collusion-
resistance problem makes it an exciting area for future work.

8.2.3 Single Point of Attack. In addition to attacks on the Traust resource
access protocol, we must also consider attacks on the Traust server itself. If a
single Traust server brokers access tokens for a large number of resources, it
will be an appealing target for attack, as a successful attacker could possibly
gain access to a large number of resources by compromising a single Traust
server. We now discuss several potential solutions to this problem:

—Small protection domains. The Traust server that controls access to a given
resource can be run on the same physical machine as the resource itself.
In this case, a compromise of the machine on which the Traust server is
running grants the attacker the access tokens needed to gain access to only
the single resource that the server was protecting. In addition, these tokens
are of no value, as the attacker implicitly gains access to that resource by
compromising the machine on which the resource is located.

This Traust server configuration model clearly prevents an attacker from
gaining access to multiple resources by compromising a single node and mo-
tivates the use of Traust in peer-to-peer systems. We next consider two
arrangements of Traust servers for use in organizations wishing to main-
tain a more structured organizational model.

—Hierarchical arrangement. Here we consider arranging the Traust servers
protecting access to an organization’s resources in a hierarchical fashion. In
this model, the Traust servers at the upper level of the hierarchy broker ac-
cess rights for a large number of low-sensitivity resources. As we proceed
down the hierarchy, Traust servers broker access to fewer, but more sensi-
tive, resources.

In addition to the distribution of access rights discussed above, high-level
Traust servers also know which lower-level servers broker access rights to
other resources in the network. This knowledge allows higher-level servers
to redirect client traffic to an appropriate lower-level server, making the or-
ganizational infrastructure easier to navigate for the client. Such a redi-
rect mechanism is not currently supported but could easily be added to the
Traust protocol by defining a new credential encoding (see Appendix C) that
encodes the next server to contact, rather than an access token. We believe
that this allows an adequate trade-off between the granularity at which
Traust servers are deployed and the consequences of compromising one of
these servers.

—Secret sharing. For organizations not willing to pay the administrative costs
associated with maintaining a hierarchy of Traust servers, we now discuss
a protection strategy based on secret sharing [Blakley 1979; Shamir 1979].
In this model, an organization deploys multiple Traust servers, the exact

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 24 · A. J. Lee et al.

number of which is determined by the organization’s unique needs. A client
wishing to access a given resource contacts one of these servers and carries
out the resource access protocol to attempt to gain access. Rather than be-
ing returned the token needed to access that resource, an authorized client
is given a share of the access token and a list of other Traust servers. On
completing the resource access protocol with a preset threshold, k, out of the
n Traust servers, the client will have the ability to reconstruct the access
token. In this model, an adversary needs to compromise multiple Traust
servers to gain access to any resource. Further research is required to
investigate how to securely manage the attribute certificates replicated
across multiple Traust servers.

In both the hierarchical and secret sharing Traust server deployment mod-
els, Traust server administrators must keep several things in mind. To reduce
the number of potential vulnerabilities that could be used to compromise a
Traust server, only a minimal set of services should be configured. For in-
stance, Novotny and colleagues [2001], suggest that a MyProxy server be run
on a “tightly secured host (e.g., comparable to a Kerberos Domain Controller)”;
this minimum precaution must also be taken to protect any Traust server bro-
kering access to highly valuable resources. Additionally, if multiple Traust
servers are to be deployed, their hardware and software configurations should
be as heterogeneous as possible [O’Donnell and Sethu 2004; Zhang et al. 2001]
to reduce the threat of a single exploit compromising multiple Traust servers.

Note that it is possible to compose the hierarchical and secret sharing
Traust server deployment models to meet the needs of a particular organi-
zation or resource provider. This flexibility allows administrators to effectively
manage the trade-offs that exist between server maintenance overheads, the
arrangement of servers within an organization, and the effects of compromis-
ing a Traust server.

8.2.4 Denial of Service. Even as optimized trust negotiation agents are
developed and thus the performance of the Traust authorization service im-
proves, the potentially centralized nature of a Traust deployment along with
the relatively heavyweight process of trust negotiation make Traust servers in-
teresting targets for denial-of-service attacks. To prevent malicious users from
extending the number of rounds required to reach a decision during a trust ne-
gotiation, Ryutov and colleagues [2005] integrate TrustBuilder with the GAA-
API and leverage the GAA-API’s mechanisms for responding to changes in
system context. They show how negotiation strategies and policies can be
adapted at runtime in response to suspicion of denial of service, thereby in-
creasing system availability. Production implementations of the trust negotia-
tion agent used by the Traust server should use a mechanism such as this to
help mitigate the threat of denial-of-service attacks.

Another more standard technique to help reduce the risk of denial of ser-
vice attacks on Traust servers is replication. Because a Traust server can be
decoupled from the resources to which it brokers access, high-traffic Traust
servers can be replicated to prevent them from becoming bottlenecks. An

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 25

organization that wishes to both allow their Traust servers to remain available
during denial-of-service attacks and prevent the compromise of some number
of Traust servers from allowing unauthorized access to their resources could
use a k-of-n secret sharing scheme as described above. This scheme ensures
that as long as k Traust servers are available, authorized users can obtain the
tokens necessary to gain access to resources provided by the organization.

8.2.5 User Accountability. Another interesting problem related to systems
based on trust negotiation involves the trade-offs that exist between openness
and accountability. If a resource protected by an identity-based authorization
system is compromised or attacked, the user whose identity was used to attack
the system can be held accountable or at the very least investigated for clues as
to who the real attacker might have been. Because trust negotiation is based
on the exchange of attribute—rather than identity—information, this is not
always possible.

As this problem is present in attribute-based trust negotiation systems in
general, rather then Traust specifically, we did not address it during our sys-
tem design. However, we see several possible solutions to this problem. One
solution would involve the use of third-party pseudonymity certifiers. These
entities could be used to provide a legal means of recourse for resource pro-
viders whose resources were abused by a user with a pseudonym attribute is-
sued by that certifier. It is not clear how such a system would function in truly
open environments, though it is an interesting avenue for future research. Al-
ternatively, resource providers could use virtual fingerprinting techniques [Lee
and Winslett 2006] to uniquely identify users who have abused their resources.
These users could then be proactively blocked at other partner sites or perhaps
even have their civil identities uncovered during the abuse investigation.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed the design and implementation of the Traust autho-
rization service. Traust was designed to enable trust negotiation, a promising
new authorization technology designed for open systems, to be integrated with
existing protocols and applications used in open systems without requiring the
restandardization or upgrade of existing protocols. In addition to providing a
migration path for the adoption of trust negotiation, the Traust service was de-
signed to be a long-term authorization solution for open systems. We described
the Traust architecture and resource access protocol in detail, discussed our
implementation and experiences using the Traust service, and presented a se-
curity evaluation of Traust.

One interesting direction for future work involves examining how Traust
could be extended to support third-party negotiations for the purposes of
obtaining new attribute certificates at runtime. We can imagine many situ-
ations in which a trust negotiation agent is asked to show an attribute cer-
tificate that it does not possess but could likely obtain. Extending Traust to
support attribute certification hints would allow one trust negotiation agent
to tell another how to use Traust to locate attribute certificates that it does
not currently possess. This however, would also allow malicious entities to

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 26 · A. J. Lee et al.

waste the time of their negotiation partners, making this an interesting
area to investigate. In addition, it is also important to further explore ways
to securely manage the access tokens stored in the repository of a Traust
server.

APPENDIX

In this appendix, we describe the wire protocol used by the Traust system.
In particular, we discuss the message syntax omitted in Section 5, the means
through which certain types of access tokens are encoded by the Traust system,
and, in detail, an example Traust interaction.

A. CORE PROTOCOL

A.1 TCP Port Number

The Traust server can be configured to listen on any open TCP port. The de-
fault port is 8162.

A.2 Traust Session Transport Layer

Traust uses TLS as its underlying transport layer. As such, all communica-
tions discussed in this specification take place confidentially between the client
and the service in a tamper-proof manner.

A.3 Basic Message Format

The basic message format used by Traust borrows greatly from that of the
MyProxy system [Basney 2005]. Commands are written as lines of ASCII text,
each of which terminates with the ASCII newline character, ‘\n’ (0x0a). A
command is terminated by two newline characters. Basic commands have the
form:

COMMAND=<integer>

<command_body_line_1>

.

.

<command_body_line_n>

Responses to these commands can take one of two forms, a successful re-
sponse or a failure response. Successful responses have the format:

COMMAND=<integer>

RESPONSE=0

<response_line_1>

.

.

<response_line_n>

Failure responses have the following format:

COMMAND=<integer>

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 27

RESPONSE=1

ERROR=<text_line_1>

.

.

ERROR=<text_line_n>

It is important to note that in both the successful and failure response cases
the <integer> in the response COMMAND line is the same as the <integer> in
the COMMAND line of the command that generated this response. In the event
that the response returned is an error response (RESPONSE=1), the ERROR lines
should be concatenated together (separated by ‘\n’ characters) by the client
process before presentation to the user. After sending an ERROR response, the
server must close the communication channel that it shares with the client
immediately.

B. CURRENTLY SUPPORTED MESSAGES

In this section, we discuss the commands supported by our prototype version
of Traust (version 0.1).

B.1 Get Info Command (COMMAND=0)

The get info command is used by a client to obtain various metainformation
regarding the Traust server. To request this information, the client sends the
following command:

COMMAND=0

The server’s response to this command is as follows:

COMMAND=0

RESPONSE=0

ATTRIB=(VERSION,0.1)

ATTRIB=(<attrib>,<value>) \

. \ optional

. /

ATTRIB=(<attrib>,<value>) /

In this response, the optional lines that begin with the ATTRIB prefix can
be used to return various other information regarding the Traust server.
Clients should be able to parse ATTRIB=(CONTACT,(<name>,<email>)) and
ATTRIB=(MOTD,<msg>) ATTRIBs. These ATTRIBs disclose the contact point for
questions about this server and the server “message of the day,” respectively.
As with ERROR responses, multiple MOTD lines should be concatenated by the
client (separated by ‘\n’ characters) before presentation to the user. Servers
may include site-specific ATTRIBs in their get info responses, though no as-
sumptions should be made as to whether clients will know how to interpret
these additional ATTRIBs.

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 28 · A. J. Lee et al.

B.2 Initiate Trust Negotiation (COMMAND=1)

The initiate trust negotiation command is sent to indicate that the sending
party wishes to conduct a trust negotiation with the other party. Clients may
send this command prior to disclosing a resource request (see Section B.4) to es-
tablish trust in the Traust server before disclosing a sensitive request. Servers
may send this command after receiving a resource request command from the
client, to establish trust in the client prior to disclosing access credentials for
the requested resource.

On the receipt of this command, the receiving party should use its trust
negotiation agent to parse all subsequent incoming communication until such
time as it receives an end trust negotiation command. An initiate trust nego-
tiation command has the following format:

COMMAND=1

As this command is an indicator, the body is left blank. It should also be
noted that there is no “response” version of this command, as it serves sim-
ply as an indicator to the other negotiating party and does not require any
response on its behalf.

B.3 End Trust Negotiation (COMMAND=2)

The end trust negotiation command is sent after the trust negotiation initi-
ated by an initiate trust negotiation message has ended. At this point, the
receiving party will cease to use its trust negotiation agent to parse incoming
communication. An end trust negotiation command has the following format:

COMMAND=2

As with the initiate trust negotiation command, the body of the end trust
negotiation command is left blank, and there is no “response” version of this
command.

B.4 Resource Request (COMMAND=3)

The resource request command invokes the credential lookup functionality of
the server. With this command, clients indicate a desire to access a given
resource. A resource request has the following format:

COMMAND=3

<resource URI>

ATTRIB=(<attribute>,<value>) // zero or more

The body of this command is a URI [Berners-Lee et al. 2005] identifying the
resource to which the client wishes to have access. In many cases, this URI
will take the form of a URL [Berners-Lee et al. 1994] specifying a networked
service, though it may also take the form of a URN [Moats 1997] describing a
more generic resource (such as a client’s desire to activate a sitewide role). The
URN syntax is also convenient for servers wishing to attach opaque identifiers

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 29

to Traust resources in hopes of hindering information gathering attacks. The
optional ATTRIB lines allow a resource request to contain additional informa-
tion, in the form of 〈attribute,value〉 pairs.

If the server receives an invalid resource request (for example, a request for
a nonexistent resource), it should return an error of the following form:

COMMAND=3

RESPONSE=1

ERROR=Invalid request

On receiving a valid resource request, the server may optionally send an
initiate trust negotiation command and conduct a trust negotiation session to
determine whether the client is authorized to have access to the given resource.
Should the trust negotiation session fail to allow the server to establish trust
in the client, the server should respond with an error response to the resource
request. This message has the format:

COMMAND=3

RESPONSE=1

ERROR=Client not authorized

If the trust negotiation session allows the server to establish trust in the
client (or was not required), the server will return the access credential (or cre-
dentials) needed to gain access to the requested resource by embedding them
in a resource request response. These messages have the following format:

COMMAND=3

RESPONSE=0

BEGIN_CREDENTIAL \

TYPE=<integer> \

<credential_data> \

. > Zero or more

. /

<credential_data> /

END_CREDENTIAL /

As shown above, zero or more credentials can be disclosed in each resource
request response. Each such credential occurs between a matched pair of
BEGIN CREDENTIAL and END CREDENTIAL lines. The TYPE line indicates (by way of
an integer code) the type of credential contained in the immediately following
CRED lines. The format of the CRED lines is TYPE dependent and is discussed in
Section C of this appendix.

C. SUPPORTED CREDENTIAL TYPES

This section describes the minimum set of credential types that must be
supported by any Traust server whose version is reported as 0.1.

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 30 · A. J. Lee et al.

Fig. 8. Wire-level details of the rescue dog Traust scenario. Multiple-message exchanges with
details omitted are denoted using dashed lines.

C.1 Username/Password Credentials (TYPE=0)

Username and password credentials will be transmitted using the following
format:

BEGIN_CREDENTIAL

TYPE=0

<plaintext username>

<plaintext password>

END_CREDENTIAL

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 31

It should be noted that plaintext username/password disclosure is permis-
sible, as the TLS channel that exists between the client and Traust server
provides confidentiality and integrity for all data transmitted.

C.2 X.509 Proxy Certifi cates (TYPE=1)

We now define the message format for transmitting an X.509 proxy credential
consisting of a proxy certificate [Tuecke et al. 2004], an RSA private key, and a
supporting certificate chain. Such credentials will be encoded and transmitted
in the following format:

BEGIN_CREDENTIAL

TYPE=1

<first line of the PEM encoded proxy certificate>

.

.

<Nth line of the PEM encoded proxy certificate>

END_CREDENTIAL

For example, if the proxy certificate being transmitted was generated using
the grid-proxy-init command, the lines between TYPE and END CREDENTIAL

should contain, line for line, the contents of the /tmp/x509up u<uid> file gener-
ated as the output from grid-proxy-init.

D. A SAMPLE TRAUST SESSION IN DETAIL

Figure 8 illustrates the wire-level details of the rescue dog Traust scenario
discussed in Section 6.4. The textual description of this interaction is omitted
because it is the same as that given in Section 6.4. As in the previous discus-
sion of this scenario, the TrustBuilder interactions are left at a high level, as a
more detailed treatment of this protocol is out of the scope of this paper.

REFERENCES

ALLCOCK, W. 2003. GridFTP protocol specification. Global Grid Forum Recommendation GFD.20.
〈http://www.globus.org/alliance/publications/papers/GFD-R.0201.pdf〉.

BASNEY, J. 2005. MyProxy protocol. Global Grid Forum Experimental Document GFD-E.54.

BASNEY, J., HUMPHREY, M., AND WELCH, V. 2005. The MyProxy online credential repository.
Soft.: Prac. Exper. 35, 9 (July) 801–816.

BAUER, L., GARRISS, S., AND REITER, M. K. 2005. Distributed proving in access-control systems.
In Proceedings of the IEEE Symposium on Security and Privacy. 81–95.

BECKER, M. Y. AND SEWELL, P. 2004. Cassandra: Distributed access control policies with tunable
expressiveness. In Proceedings of the 5th IEEE International Workshop on Policies for Distrib-

uted Systems and Networks. 159–168.

BERNERS-LEE, T., FIELDING, R. T., AND MASINTER, L. 2005. Uniform resource identifier (URI):
Generic syntax. IETF Request for Comments RFC-3986.

BERNERS-LEE, T., MASINTER, L., AND MCCAHILL, M. 1994. Uniform resource locators (URL).
IETF Request for Comments RFC-1738.

BERTINO, E., FERRARI, E., AND SQUICCIARINI, A. C. 2003. X-TNL: An XML-based language
for trust negotiations. In Proceedings of the 4th IEEE International Workshop on Policies for

Distributed Systems and Networks (POLICY’03). 81–84.

BERTINO, E., FERRARI, E., AND SQUICCIARINI, A. C. 2004. Trust-X: A peer-to-peer framework
for trust establishment. IEEE Trans. Knowl. Data Eng. 16, 7 (July) 827–842.

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

2: 32 · A. J. Lee et al.

BLAKLEY, G. R. 1979. Safeguarding cryptographic keys. In AFIPS Conference Proceedings. Vol. 48.
313–317.

BONATTI, P. AND SAMARATI, P. 2000. Regulating service access and information release on the
Web. In Proceedings of the 7th ACM Conference on Computer and Communications Security.
134–143.

BORDERS, K., ZHAO, X., AND PRAKASH, A. 2005. CPOL: High-performance policy evaluation. In
Proceedings of the 12th ACM Conference on Computer and Communications Security (CCS’05).
147–157.

CAMENISCH, J. AND HERREWEGHEN, E. V. 2002. Design and implementation of the idemix

anonymous credential system. In Proceedings of the 9th ACM Conference on Computer and Com-

munications Security. 21–30.

DIERKS, T. AND ALLEN, C. 1999. The TLS protocol version 1.0. IETF Request for Comments RFC-
2246.

DOLEV, D. AND YAO, A. C. 1983. On the security of public key protocols. IEEE Trans. Inform.

Theory IT-29, 2 (March) 198–208.

HERZBERG, A., MASS, Y., MICHAELI, J., NAOR, D., AND RAVID, Y. 2000. Access control meets
public key infrastructure, or: assigning roles to strangers. In Proceedings of the IEEE Sympo-

sium on Security and Privacy. 2–14.

HESS, A., HOLT, J., JACOBSON, J., AND SEAMONS, K. E. 2004. Content-triggered trust negotia-
tion. ACM Trans. Inform. Syst. Secur. 7, 3 (Aug.) 428–456.

HESS, A., JACOBSON, J., MILLS, H., WAMSLEY, R., SEAMONS, K. E., AND SMITH, B. 2002. Ad-
vanced client/server authentication in TLS. In Proceedings of the Network and Distributed Sys-

tems Security Symposium. 203–214.

HOLT, J., BRADSHAW, R., SEAMONS, K. E., AND ORMAN, H. 2003. Hidden credentials. In Pro-

ceedings of the 2nd ACM Workshop on Privacy in the Electronic Society. 1–8.

ISRL. 2005. Internet security research lab–projects. 〈http://isrl.cs.byu.edu/TrustBuilder.

html〉.

KOSHUTANSKI, H. AND MASSACCI, F. 2004a. Interactive access control for web services. In Pro-

ceedings of the 19th IFIP Information Security Conference (SEC). 151–166.

KOSHUTANSKI, H. AND MASSACCI, F. 2004b. Interactive trust management and negotiation
scheme. In Proceedings of the Second International Workshop on Formal Aspects in Security

and Trust (FAST). 139–152.

KOSHUTANSKI, H. AND MASSACCI, F. 2005. Interactive credential negotiation for stateful busi-
ness processes. In Proceedings of the 3rd International Conference on Trust Management

(iTrust). 257–273.

LEE, A. J. AND WINSLETT, M. 2006. Virtual fingerprinting as a foundation for reputation in open
systems. In Proceddings of the 4th International Conference on Trust Management (iTrust’06).

Number 3986 in Lecture Notes in Computer Science. Springer, 236–251.

LI, J., LI, N., AND WINSBOROUGH, W. H. 2005. Automated trust negotiation using cryptographic
credentials. In Proceedings of 12th ACM Conference on Computer and Communications Security

(CCS). 46–57.

LI, N., DU, W., AND BONEH, D. 2003. Oblivious signature-based envelope. In Proceedings of the

22nd ACM Symposium on Principles of Distributed Computing. 182–189.

LI, N. AND MITCHELL, J. C. 2003. RT: A role-based trust-management framework. In Proceedings

of the 3rd DARPA Information Survivability Conference and Exposition. 201–212.

LI, N., WINSBOROUGH, W. H., AND MITCHELL, J. C. 2003. Distributed credential chain discovery
in trust management. J. Comput. Secur. 11, 1 (Feb.) 35–86.

MINAMI, K. AND KOTZ, D. 2005. Secure context-sensitive authorization. J. Pervas. Mobile Com-

put. 1, 1 (March) 123–156.

MINAMI, K. AND KOTZ, D. 2006. Scalability in a secure distributed proof system. In Proceedings

of the International Conference on Pervasive Computing. 220–237.

MOATS, R. 1997. URN syntax. IETF Request for Comments RFC-2141.

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

The Traust Authorization Service · 2: 33

MORRIS, J. H., SATYANARAYANAN, M., CONNER, M. H., HOWARD, J. H., ROSENTHAL, D. S., AND

SMITH, F. D. 1986. Andrew: A distributed personal computing environment. Comm. ACM 29, 3
(March) 184–201.

NOVOTNY, J., TUECKE, S., AND WELCH, V. 2001. An online credential repository for the grid:
MyProxy. In Proceedings of the International Symposium on High Performance Distributed Com-

puting (HPDC-10). 104–111.

O’DONNELL, A. J. AND SETHU, H. 2004. On achieving software diversity for improved network
security using distributed coloring algorithms. In Proceedings of the 11th ACM Conference on

Computer and Communications Security. 121–131.

PEARLMAN, L., WELCH, V., FOSTER, I., KESSELMAN, C., AND TUECKE, C. 2002. A community
authorization service for group collaboration. In Proceedings of the 3rd IEEE International Work-

shop on Policies for Distributed Systems and Networks. 50–59.

POSTEL, J. AND REYNOLDS, J. 1985. File transfer protocol (FTP). IETF Request for Comments

RFC-959.

RYUTOV, T., ZHOU, L., NEUMAN, C., LEITHEAD, T., AND SEAMONS, K. E. 2005. Adaptive trust
negotiation and access control. In Proceedings of the Tenth ACM Symposium on Access Control

Models and Technologies. 139–146.

SAHAI, A. AND WATERS, B. 2005. Fuzzy identity based encryption. In Proceedings of Eurocrypt.
Lecture Notes in Computer Science, vol. 3494, Springer, 457–473.

SALTZER, J. H. AND SCHROEDER, M. D. 1975. The protection of information in computer systems.
In Proceedings of IEEE 63, 9 (Sept.) 1278–1308.

SHAMIR, A. 1979. How to share a secret. Comm. ACM 22, 11 (Nov.) 612–613.

TUECKE, S., WELCH, V., ENGERT, D., PEARLMAN, L., AND THOMPSON, M. 2004. Internet X.509
public key infrastructure (PKI) proxy certificate profile. IETF Request for Comments RFC-3820.

WANG, L., WIJESEKERA, D., AND JAJODIA, S. 2004. A logic-based framework for attribute based
access control. In Proceedings of the 2nd ACM Workshop on Formal Methods in Security Engi-

neering (FMSE’04). 45–55.

WELCH, V., SIEBENLIST, F., FOSTER, I., BRESNAHAN, J., CZAJKOWSKI, K., GAWOR, J., KESSEL-
MAN, C., MEDER, S., PEARLMAN, L., AND TUECKE, S. 2003. Security for grid services. In
Proceedings of the 12th International Symposium on High Performance Distributed Computing

(HPDC12). 48–57.

WINSBOROUGH, W. H. AND LI, N. 2002. Towards practical automated trust negotiation. In Pro-

ceedings of the 3rd IEEE International Workshop on Policies for Distributed Systems and Net-

works. 92–103.

WINSBOROUGH, W. H., SEAMONS, K. E., AND JONES, V. E. 2000. Automated trust negotiation.
In Proceedings of the DARPA Information Survivability Conference and Exposition. 88–102.

WINSLETT, M., YU, T., SEAMONS, K. E., HESS, A., JACOBSON, J., JARVIS, R., SMITH, B., AND

YU, L. 2002. The TrustBuilder architecture for trust negotiation. IEEE Intern. Comput. 6, 6
(Nov./Dec.) 30–37.

WINSLETT, M., ZHANG, C., AND BONATTI, P. A. 2005. PeerAccess: A logic for distributed autho-
rization. In Proceedings of the 12th ACM Conference on Computer and Communications Security

(CCS’05). 168–179.

YLONEN, T. AND LONVICK, C. 2005. SSH transport layer protocol. IETF Network Working Group
Internet-Draft.

YU, T., WINSLETT, M., AND SEAMONS, K. E. 2003. Supporting structured credentials and sen-
sitive policies through interoperable strategies for automated trust negotiation. ACM Trans.

Inform. Syst. Secur. 6, 1 (Feb.) 1–42.

ZHANG, Y., VIN, H., ALVISI, L., LEE, W., AND DAO, S. K. 2001. Heterogeneous networking: A

new survivability paradigm. In Proceedings of the Workshop on New Security Paradigms. 33–39.

Received October 2006; revised March 2007; accepted June 2007

ACM Transactions on Information and Systems Security, Vol. 11, No. 1, Article 2, Pub. date: February 2008.

