
Nymble: Blocking Misbehaving Users in Anonymizing Networks∗†

Patrick P. Tsang‡, Apu Kapadia§, Cory Cornelius¶ and Sean W. Smith‖

Dartmouth Computer Science Technical Report
TR2008-637

Dec 7, 2008

Abstract

Anonymizing networks such as Tor allow users to access Internet services privately by using
a series of routers to hide the client’s IP address from the server. The success of such networks,
however, has been limited by users employing this anonymity for abusive purposes such as
defacing popular websites. Website administrators routinely rely on IP-address blocking for
disabling access to misbehaving users, but blocking IP addresses is not practical if the abuser
routes through an anonymizing network. As a result, administrators block all known exit
nodes of anonymizing networks, denying anonymous access to misbehaving and behaving users
alike. To address this problem, we present Nymble, a system in which servers can “blacklist”
misbehaving users, thereby blocking users without compromising their anonymity. Our system
is thus agnostic to different servers’ definitions of misbehavior — servers can blacklist users for
whatever reason, and the privacy of blacklisted users is maintained.

Keywords: anonymous blacklisting, privacy, revocation

∗This research was supported in part by the NSF, under grant CNS-0524695, and the Bureau of Justice Assistance,
under grant 2005-DD-BX-1091. The views and conclusions do not necessarily reflect the views of the sponsors.

†Nymble first appeared in a PET ’07 paper [JKTS07]. This paper presents a significantly improved construction
and a complete rewrite and evaluation of our (open-source) implementation.

‡Department of Computer Science, Dartmouth College, USA. E-mail: patrick@cs.dartmouth.edu
§MIT Lincoln Laboratory, USA. E-mail: akapadia@ll.mit.edu. This research was performed while he was at

Dartmouth College.
¶Department of Computer Science, Dartmouth College, USA. E-mail: Cory.T.Cornelius@Dartmouth.EDU
‖Department of Computer Science, Dartmouth College, USA. E-mail: sws@cs.dartmouth.edu

patrick@cs.dartmouth.edu
akapadia@ll.mit.edu
Cory.T.Cornelius@Dartmouth.EDU
sws@cs.dartmouth.edu

Contents

1 Introduction 4
1.1 Our solution . 5
1.2 Contributions of this paper . 5

2 An Overview to Nymble 6
2.1 Resource-based blocking . 6
2.2 The Pseudonym Manager . 7
2.3 The Nymble Manager . 7
2.4 Time . 7
2.5 Blacklisting a user . 8
2.6 Notifying the user of blacklist status . 8

3 Security Model 9
3.1 Goals and threats . 9
3.2 Trust assumptions . 10

4 Preliminaries 10
4.1 Notation . 10
4.2 Cryptographic primitives . 10
4.3 Data structures . 11
4.4 Communication channels . 16

5 Our Nymble Construction 16
5.1 System setup . 16
5.2 Server registration . 17
5.3 User registration . 18
5.4 Credential acquisition . 18
5.5 Nymble-connection establishment . 19
5.6 Service provision and access logging . 21
5.7 Auditing and filing for complaints . 21
5.8 Blacklist update . 22
5.9 Periodic update . 23

6 Evaluation 24
6.1 Security . 24
6.2 Performance . 24

7 Security Formalism 28
7.1 Oracles . 28
7.2 Game-Accountability . 30
7.3 Game-Non-Frameability . 32
7.4 Game-Anonymity . 33

2

8 Security Analysis 34
8.1 Accountability . 34
8.2 Non-Frameability . 35
8.3 Anonymity . 35
8.4 Across multiple linkability windows . 37

9 Discussion 37

10 Conclusions 38

List of Figures

1 The Nymble system architecture . 6
2 The life cycle of a misbehaving user . 8
3 Nymble’s matrix of trust assumptions . 10
4 A summary of all the data structures in Nymble . 12
5 Evolution of seeds and nymbles . 13
6 A chain of daisies . 16
7 Different types of channels utilized in Nymble . 18
8 The Nymble-connection Establishment protocol . 20
9 The marshaled size of various Nymble data structures 26
10 Nymble’s performance at the NM, the user and the server 27
11 The universe of all honest registered users . 33

3

1 Introduction

Anonymizing networks such as Crowds [RR98] and Tor [DMS04] route traffic through independent
nodes in separate administrative domains to hide a client’s IP address. Unfortunately, some users
have misused such networks — under the cover of anonymity, users have repeatedly defaced popu-
lar websites such as Wikipedia. Since website administrators cannot blacklist individual malicious
users’ IP addresses, they blacklist the entire anonymizing network. Such measures eliminate mali-
cious activity through anonymizing networks at the cost of denying anonymous access to behaving
users. In other words, a few “bad apples” can spoil the fun for all. (This has happened repeatedly
with Tor.1)

There are several solutions to this problem, each providing some degree of accountability. In
pseudonymous credential systems [Cha90, Dam88, HS06, LRSW99], users are required to log into
websites using pseudonyms, which can be added to a blacklist if a user misbehaves. Unfortunately,
this approach results in pseudonymity for all users, and weakens the anonymity provided by the
underlying anonymizing network.

Anonymous credential systems such as Camenisch and Lysyanskaya’s systems [CL01, CL04] use
group signatures for anonymous authentication Basic group signatures [ACJT00, BSZ05, CvH91]
allow servers to revoke a misbehaving user’s anonymity by complaining to a group manager. In
these schemes, servers must query the group manager for every authentication, and this lack of
scalability makes it unsuitable for our goals. Traceable signatures [KTY04, vABHO06] allow the
group manager to release a trapdoor that allows all signatures generated by a particular user to be
traced; such an approach does not provide the backward unlinkability [NF05] that we desire, where
a user’s accesses before the complaint remain anonymous. Backward unlinkability allows for what
we call subjective blacklisting, where servers can blacklist users for whatever reason since the privacy
of the blacklisted user is not at risk. In contrast, approaches without backward unlinkability need
to pay careful attention to when and why a user must have all their connections linked, and users
must also worry about whether their (mis)behaviors will be judged fairly.

Subjective blacklisting is also better suited to servers such as Wikipedia, where misbehaviors
such as questionable edits to a webpage, are hard to define in mathematical terms. In some
systems, misbehavior can indeed be defined precisely. For instance, double-spending of an “e-coin”
is considered a misbehavior in anonymous e-cash systems [Bra93, Cha82], following which the
offending user is deanonymized. Unfortunately, such systems work for only narrow definitions of
misbehavior — it is difficult to map more complex notions of misbehavior onto “double spending”
or related approaches [TFS04].

With dynamic accumulators [CL02, Ngu05, TX03], a revocation operation results in a new
accumulator and public parameters for the group, and all other existing users’ credentials must
be updated, and it is thus difficult to manage in practical settings. Verifier-local revocation
(VLR) [BS01, AST02, BS04] fixes this shortcoming by requiring the server (“verifier”) to per-
form only local updates during revocation. Unfortunately, VLR requires heavy computation at the
server that is linear in the size of the blacklist. For example, for a blacklist with 1,000 entries, each
authentication would take tens of seconds,2 a prohibitive cost in practice. In contrast, our scheme
takes the server about one millisecond per authentication, which is several thousand times faster

1The Abuse FAQ for Tor Server Operators lists several such examples at http://tor.eff.org/faq-abuse.html.en.
2In the construction due to Boneh and Shacham [BS04], computation at the server involves 3 + 2|BL| pairing

operations, each of which takes tens of ms, according to a benchmark from: http://crypto.stanford.edu/pbc.

4

http://crypto.stanford.edu/pbc

than VLR.
Lastly, any practical deployment of a credential scheme must address the Sybil attack [Dou02],

where a malicious user can potentially assume multiple identities.

1.1 Our solution

We present a secure system called Nymble, which provides all the following properties: anonymous
authentication, backward unlinkability, subjective blacklisting, fast authentication speeds, rate-
limited anonymous connections, revocation auditability (where users can verify whether they have
been blacklisted), and also addresses the Sybil attack to make its deployment practical.3

In Nymble, users acquire an ordered collection of nymbles, a special type of pseudonym, to
connect to websites. Without additional information, these nymbles are computationally hard to
link,4 and hence using the stream of nymbles simulates anonymous access to services. Websites,
however, can blacklist users by obtaining a seed for a particular nymble, allowing them to link
future nymbles from the same user — those used before the complaint remain unlinkable. Servers
can therefore blacklist anonymous users without knowledge of their IP addresses while allowing
behaving users to connect anonymously. Our system ensures that users are aware of their blacklist
status before they present a nymble, and disconnect immediately if they are blacklisted. Although
our work applies to anonymizing networks in general, we consider Tor for purposes of exposition.
In fact, any number of anonymizing networks can rely on the same Nymble system, blacklisting
anonymous users regardless of their anonymizing network(s) of choice.

1.2 Contributions of this paper

Our research makes the following contributions:

• Blacklisting anonymous users. We provide a means by which servers can blacklist users
of an anonymizing network while maintaining their privacy.

• Practical performance. A system such as ours will see widespread adoption only if its
performance is acceptable at the server. Our protocol makes use of inexpensive symmetric
cryptographic operations to significantly outperform the alternatives.

• Open-source implementation. With the goal of contributing a workable system, we have
built an open-source implementation of Nymble, which is publicly available.5 We provide
performance statistics to show that our system is indeed practical.

A preliminary work-in-progress version of this paper (suggesting the use of trusted hardware)
was presented at the Second Workshop on Advances in Trusted Computing [TKS06]. In our paper
presented at the Privacy Enhancing Technologies Symposium [JKTS07], we eliminated the trusted
hardware from our design, and outlined the initial version of our system. This paper represents
a significantly revised system, including major enhancements and a thorough evaluation of our
protocol, and an open-source release of our system for general use. Some of the authors of this paper

3We do not claim to solve the Sybil attack, which is a challenging problem, but we do provide a solution that
represents a tradeoff between blacklistability and practicality.

4Two nymbles are linked if one can infer that they belong to the same user with probability better than random
guessing.

5The Nymble Project. http://www.cs.dartmouth.edu/∼nymble.

5

http://www.cs.dartmouth.edu/~nymble

User
Registration

Tor

Nymble Connection

System Setup

Credential
Acquisition

Nymble
Manager

ServerUser

Pseudonym
Manager

Blacklist Update
(and Complaints)

Server
Registration

Figure 1: The Nymble system architecture showing the various modes of interaction. Users in-
teract with the PM directly, and with the NM and servers though the anonymizing network. All
interactions not involving the user take place directly.

have published two anonymous authentication schemes, BLAC [TAKS07] and PEREA [TAKS08],
which eliminate the need for a trusted third party for revoking users. While BLAC and PEREA
provide better privacy by eliminating the TTP, Nymble provides authentication rates that are
several orders of magnitude faster than BLAC and PEREA (see Section 6). Nymble thus represents
a practical solution for blocking misbehaving users of anonymizing networks.

2 An Overview to Nymble

We now present a high-level overview of the Nymble system, and defer the entire protocol description
and security analysis to subsequent sections.

2.1 Resource-based blocking

Our system provides servers with a means to block misbehaving users of an anonymizing network.
Blocking a particular user, however, is a formidable task since that user could possibly acquire
several identities (called the Sybil attack [Dou02]). The Nymble system binds nymbles to resources
that are sufficiently difficult to obtain in great numbers. For example, we have used IP addresses
as the resource in our implementation, but our scheme generalizes to other resources such as email
addresses, identity certificates, trusted hardware, and so on.

We note that if two users can prove access to the same resource (e.g., if an IP address is
reassigned), they will obtain the same stream of nymbles. We will address the practical issues
related with resource-based blocking in Section 9, along with other examples of resources that
would be useful in limiting the Sybil attack.

At this point we emphasize that creating Sybil-free credentials is an independent research topic
in itself and we do not claim to solve the Sybil attack in this paper. This problem is faced by any
credential system [Dou02, LSM06], and we suggest some promising approaches based on resource-
based blocking since we aim to create a real-world deployment.

6

2.2 The Pseudonym Manager

The user must first contact the Pseudonym Manager (PM) and demonstrate control over a resource;
for IP-address blocking, the user is required to connect to the PM directly (i.e., not through a known
anonymizing network), as shown in Figure 1. We assume the PM has knowledge about Tor routers,
for example, and can ensure that users are communicating with it directly.6 Pseudonyms are
deterministically chosen based on the controlled resource, ensuring that the same pseudonym is
always issued for the same resource.

Note that the user does not disclose what server he or she intends to connect to, and therefore
the user’s connections are anonymous to the PM. The PM’s duties are limited to mapping IP
addresses (or other resources) to pseudonyms. As we will explain, the user contacts the PM only
once per linkability window (e.g., once a day).

2.3 The Nymble Manager

After obtaining a pseudonym from the PM, the user connects to the Nymble Manager (NM) through
the anonymizing network, and requests nymbles for access to a particular server (such as Wikipedia).
Nymbles are generated using the user’s pseudonym and the server’s identity. The user’s connections,
therefore, are pseudonymous to the NM (as long as the PM and the NM do not collude) since the
NM knows only the pseudonym-server pair, and the PM knows only the IP address-pseudonym
pair. Note that due to the pseudonym assignment by the PM, nymbles are bound to the user’s IP
address and the server’s identity.

To provide the requisite cryptographic protection and security properties (e.g., users should not
to be able to fabricate their own nymbles), the NM encapsulates nymbles within nymble tickets.
Servers wrap seeds into linking tokens and therefore we will speak of linking tokens being used to
link future nymble tickets. The importance of these constructs will become apparent as we proceed.

2.4 Time

Nymble tickets are bound to specific time periods. As illustrated in Figure 2, in our system time
is divided into linkability windows of duration W, each of which is split into L time periods of
duration T (i.e., W = L∗T). We will refer to time periods and linkability windows chronologically
as t1, t2, . . . , tL and w1, w2, . . . respectively. While a user’s access within a time period is tied
to a single nymble ticket, the use of different nymble tickets across time periods grants the user
anonymity between time periods — smaller time periods provide users with higher rates of anony-
mous authentication, and likewise longer time periods rate-limit the number of misbehaviors from
a particular user before he or she is blocked. For example, T could be set to 5 minutes, and W to
1 day (and thus L = 288). The linkability window serves two purposes — it allows for dynamism
since resources such as IP addresses can get reassigned to different well-behaved users, making it
undesirable to blacklist such resources indefinitely, and it ensures forgiveness of misbehavior after
a certain period of time.

We assume that all entities, the PM, NM, servers, and users are time synchronized (for example,
with time.nist.gov via the Network Time Protocol (NTP)), and can thus calculate the current

6Note that if a user connects through an unknown anonymizing network or proxy, the security of our system is
no worse than that provided by real IP-address blocking, where the user could have used an anonymizing network
unknown to the server.

7

time.nist.gov

t1 t* tc tL...t1tL
w*

Misbehavior Complaint

time

Future
connections

become
linkable

Previous connections remain
anonymous and unlinkable

Connections
anonymous

and unlinkable
once again

...

Figure 2: The life cycle of a misbehaving user. If the server complains in time period tc about a
user’s connection in t∗, the user becomes linkable starting in tc. Note that the complaint in tc can
include nymble tickets from only tc−1 and earlier.

linkability window and time period. Time-synchronization protocols such as NTP reduce but do not
eliminate clock skews. Nymble does not attempt to defend against remote device-fingerprinting at-
tacks, which attempt to reduce the anonymity of users by, e.g., inferring their clock skews [KBC05].
We leave such defenses to future work.

2.5 Blacklisting a user

If a user misbehaves, the server may link any future connection from this user within the current
linkability window (e.g., the same day). Consider Figure 2 as an example: A user connects and
misbehaves at a server during time period t∗ within linkability window w∗. The server later detects
this misbehavior and complains to the NM in time period tc (t∗ < tc ≤ tL) of the same linkability
window w∗. As part of the complaint, the server presents the nymble ticket of the misbehaving
user and obtains the corresponding seed from the NM. The server is then able to link future
connections by the user in time periods tc, tc + 1, . . . , tL of the same linkability window w∗ to the
complaint. Therefore, users are blacklisted for the rest of the day, for example (the linkability
window), once the server has complained about that user. Note that the user’s connections in
t1, t2, . . . , t

∗, t∗ + 1, . . . , tc remain unlinkable (i.e., including those since the misbehavior and until
the time of complaint). Even though misbehaving users can be blocked from making connections
in the future, the users’ past connections remain unlinkable. This property allows the NM to be
agnostic of servers’ complaints; servers can subjectively judge users for any reason because users’
privacy is maintained. We now describe how users are notified of their blacklisting status.

2.6 Notifying the user of blacklist status

Users who make use of anonymizing networks expect their connections to be anonymous. If a server
obtains a seed for that user, however, it can link that user’s subsequent connections (we emphasize
that the user’s previous connections remain anonymous to the server). It is of utmost importance,
then, that users be notified of their blacklisting status before they present a nymble ticket to a
server. In our system, the user can download the server’s blacklist and verify whether she is on the
blacklist. If so, the user disconnects immediately (the server learns that “some user disconnected
probably because he or she has been blacklisted”).

8

Since the blacklist is cryptographically signed by the NM, the authenticity of the blacklist is
easily verified if the blacklist was updated in the current time period (only one update to the
blacklist per time period is allowed). If the blacklist has not been updated in the current time
period, the NM provides servers with “daisies” every time period so that users can verify the
freshness of the blacklist (“blacklist from time period told is fresh as of time period tnow”). As we
will discuss later, these daisies are elements of a hash chain, and provide a lightweight alternative
to digital signatures. Using digital signatures and daisies, we thus ensure that race conditions are
not possible in verifying the freshness of a blacklist. A user is guaranteed that he or she will not
be linked if the user verifies the integrity and freshness of the blacklist before sending his or her
nymble ticket.

3 Security Model

Nymble aims for four security goals. We provide informal definitions here; a detailed formalism is
given in Section 7, which explains how these goals must also resist coalition attacks.

3.1 Goals and threats

An entity is honest when its operations abide by the system’s specification. An honest entity
can be curious: it attempts to infer knowledge from its own information (e.g., its secrets, state,
and protocol communications). An honest entity becomes corrupt when it is compromised by an
attacker, and hence reveals its information at the time of compromise, and operates under the
attacker’s full control, possibly deviating from the specification.

3.1.1 Blacklistability

Blacklistability assures that any honest server can indeed block misbehaving users. Specifically, if
an honest server complains about a user that misbehaved in the current linkability window, the
complaint will be successful and the user will not be able to “nymble-connect,” i.e., establish a
Nymble-authenticated connection, to the server successfully in subsequent time periods (following
the time of complaint) of that linkability window.

3.1.2 Rate-limiting

Rate-limiting assures any honest server that no user can successfully nymble-connect to it more
than once within any single time period.

3.1.3 Anonymity

A user is legitimate according to a server if she has not been blacklisted by the server, and has
not exceeded the rate limit of establishing Nymble-connections. Honest servers must be able to
differentiate between legitimate and illegitimate users.

Anonymity protects the anonymity of honest users, regardless of their legitimacy according to
the (possibly corrupt) server; the server cannot learn any more information beyond whether the
user behind (an attempt to make) a nymble-connection is legitimate or illegitimate.

9

Who Whom How What

Servers PM & NM honest Blacklistability & Rate-limiting
Users PM honest Anonymity
Users NM honest & not curious Anonymity
Users PM & NM honest Non-frameability

Figure 3: Nymble’s matrix of trust assumptions: Who trusts whom to be how for what guarantee.

3.1.4 Non-frameability

Non-frameability guarantees that any honest user who is legitimate according to an honest server
can nymble-connect to that server. This prevents an attacker from framing a legitimate honest
user, e.g., by getting the user blacklisted for someone else’s misbehavior.

3.2 Trust assumptions

We allow the servers and the users to be corrupt and controlled by an attacker. Not trusting these
entities is important because encountering a corrupt server and/or user is a realistic threat. Nymble
must still attain its goals under such circumstances.

Nymble makes several assumptions on who trusts whom to be how for what guarantee. We
represent these trust assumptions as a matrix in Figure 3. Should a trust assumption become
invalid, Nymble will not be able to provide the corresponding guarantee. For example, a corrupt
NM alone can undermine Blacklistability by issuing credentials to users without a valid pseudonym.

4 Preliminaries

4.1 Notation

The notation a ∈R S represents an element drawn uniformly at random from non-empty set S. N0

is the set of non-negative integers, and N is the set N0\{0}. s[i] is the i-th element of list s. s||t is the
concatenation of (the unambiguous encoding of) lists s and t. The empty list is denoted by ∅. We
sometimes treat lists of tuples as dictionaries. For example, if L is the list ((Alice, 1234), (Bob, 5678)),
then L[Bob] denotes the tuple (Bob, 5678). If A is a (possibly probabilistic) algorithm, then A(x)
denotes the output when A is executed given the input x. a := b means that b is assigned to a.

4.2 Cryptographic primitives

Nymble uses the following building blocks (concrete instantiations are suggested in Section 6):

• Secure cryptographic hash functions. These are one-way, collision-resistant and pseudo-
random functions [BR93] that compute a digest of a message. Denote the range of the
hash functions by H.

• Secure message authentication (MA) [BCK96]. It consists of the key generation (MA.KeyGen),
and the message authentication code (MAC) computation (MA.Mac) algorithms. Denote the
domain of MACs byM.

10

Algorithm 1 PMCreatePseudonym

Input: (uid ,w) ∈ H × N
Persistent state: pmState ∈ SP

Output: pnym ∈ P
1: Extract nymKeyP ,macKeyNP from pmState
2: nym := MA.Mac(uid ||w ,nymKeyP)
3: mac := MA.Mac(nym||w ,macKeyNP)
4: return pnym := (nym,mac)

Algorithm 2 NMVerifyPseudonym

Input: (pnym,w) ∈ P × N
Persistent state: nmState ∈ SN

Output: b ∈ {true, false}
1: Extract macKeyNP from nmState
2: (nym,mac) := pnym
3: return mac ?= MA.Mac(nym||w ,macKeyNP)

• Secure symmetric-key encryption (Enc) [BDJR97]. It consists of the key generation
(Enc.KeyGen), encryption (Enc.Encrypt), and decryption (Enc.Decrypt) algorithms. Denote
the domain of ciphertexts by Γ.

• Secure digital signatures (Sig) [GMR88]. It consists of the key generation (Sig.KeyGen), signing
(Sig.Sign), and verification (Sig.Verify) algorithms. Denote the domain of signatures by Σ.

4.3 Data structures

We now describe several important data structures used by Nymble (Figure 4 provides a convenient
summary).

4.3.1 Pseudonyms

The PM issues pseudonyms to users. A pseudonym pnym has two components nym and mac: nym
is a pseudo-random mapping of the user’s identity (e.g., IP address),7 the linkability window w for
which the pseudonym is valid, and the PM’s secret key nymKeyP ; mac is a MAC that the NM uses
to verify the integrity of the pseudonym. Algorithms 1 and 2 describe the procedures of creating
and verifying pseudonyms.

4.3.2 Seeds and nymbles

A nymble is a pseudo-random number, which serves as an identifier for a particular time period.
Nymbles (presented by a user) across periods are unlinkable unless a server has blacklisted that
user. Nymbles are presented as part of a nymble ticket, as described next.

7In Nymble, identities (users’ and servers’) are encoded into a fixed-length string using a cryptographic hash
function.

11

D
at

a
st

ru
ct

ur
e

D
es

cr
ip

ti
on

D
efi

ni
ti

on
D

om
ai

n

pn
ym

P
se

ud
on

ym
(n

ym
,m

ac
)

P
. =
M

2

ti
ck

et
T

ic
ke

t
(t

im
e,

ny
m

bl
e,

ct
xt

,m
ac

N
,m

ac
N

S
)

T
. =

N
×
H
×

Γ
×
M

2

cr
ed

C
re

de
nt

ia
l

(n
ym

bl
e∗

,t
ic

ke
ts

)
D

. =
H
×
T

L

bl
is

t
B

la
ck

lis
t

(n
ym

bl
e∗ 1

,.
..

,n
ym

bl
e∗ n

)
B n

. =
H

n
,n
∈

N
0

ce
rt

B
la

ck
lis

t
ce

rt
.

(t
im

e d
,d

ai
sy

,t
im

e s
,m

ac
,s

ig
)

C
. =

N
×
H
×

N
×
M
×

Σ
to

ke
n

L
in

ki
ng

to
ke

n
(s

ee
d
,n

ym
bl

e)
N

. =
H

2

pm
St

at
e

P
M

’s
st

at
e

(n
ym

K
ey

P
,m

ac
K

ey
N

P
)

S P
. =
K

2 M
a
c

nm
K

ey
s

N
M

’s
ke

ys
(m

ac
K

ey
N

P
,m

ac
K

ey
N

,s
ee

dK
ey

N
K

. =
K

3 M
a
c
×
K

E
n
cr

yp
t
×
K

D
ec

ry
p
t×

en
cK

ey
N

,d
ec

K
ey

N
,s

ig
nK

ey
N

,v
er

K
ey

N
)

K
S
ig

n
×
K

V
er

if
y

nm
E
nt

ry
N

M
’s

en
tr

y
(s

id
,m

ac
K

ey
N

S
,d

ai
sy

L
,t

im
e l

a
st

U
p
d
)

E N
. =
H
×
K

M
a
c
×
H
×

N
nm

St
at

e
N

M
’s

st
at

e
(k

ey
s,

nm
E
nt

ri
es

)
S N

. =
K
×
E N

n
,n
∈

N
0

sv
rS

ta
te

Se
rv

er
’s

st
at

e
(s

id
,m

ac
K

ey
N

S
,b

lis
t,

ce
rt

,s
ee

n
-t
ic

ke
ts

,
S S

. =
H
×
K

M
a
c
×
B k
×
C
×
T

` ×
cm

pl
nt

-t
ic

ke
ts

,l
nk

ng
-t
ok

en
s,

ti
m

e l
a
st

U
p
d
)

T
m
×
N

n
×

N
,k

,`
,m

,n
∈

N
0

us
rE

nt
ry

U
se

r’
s

en
tr

y
(s

id
,c

re
d
,t

ic
ke

tD
is

cl
os

ed
)

E U
. =
H
×
D
×
{t

ru
e,

fa
ls

e}
us

rS
ta

te
U

se
r’

s
st

at
e

(p
ny

m
,u

sr
E
nt

ri
es

)
S U

. =
P
×
E U

n
,n
∈

N
0

F
ig

ur
e

4:
A

su
m

m
ar

y
of

al
l
th

e
da

ta
st

ru
ct

ur
es

in
N

ym
bl

e.

12

nymble1

seed1seed0 seed2
ff

nymble2 nymbleL

seedL
f f. . .

nymble*

g g g g

. . .

Figure 5: Evolution of seeds and nymbles. Given seed i it is easy to compute
nymblei,nymblei+1, . . . ,nymbleL, but not nymble∗,nymble1, . . . ,nymblei−1.

As shown in Figure 5, seeds evolve throughout a linkability window using a seed-evolution
function f ; the seed for the next time period (seednext) is computed from the seed for the current
time period (seed cur) as

seednext = f(seed cur).

The nymble (nymblet) for a time period t is evaluated by applying the nymble-evaluation function
g to its corresponding seed (seed t), i.e.,

nymblet = g(seed t).

The NM sets seed0 to a pseudo-random mapping of the user’s pseudonym pnym, the (encoded)
identity sid of the server (e.g., domain name), the linkability window w for which the seed is valid,
and the NM’s secret key seedKeyN . Seeds are therefore specific to user-server-window combinations.
As a consequence, a seed is useful only for a particular server to link a particular user during a
particular linkability window.

In our Nymble construction, f and g are two distinct cryptographic hash functions. Hence, it is
easy to compute future nymbles starting from a particular seed by applying f and g appropriately,
but infeasible to compute nymbles otherwise. Without a seed, the sequence of nymbles appears
unlinkable, and honest users can enjoy anonymity. Even when a seed for a particular time period
is obtained, all the nymbles prior to that time period remain unlinkable.

4.3.3 Nymble tickets and credentials

We now describe how nymbles are wrapped into tickets for authentication when connecting to a
server.

A credential contains all the nymble tickets for a particular linkability window that a user
can present to a particular server. Algorithm 3 describes the following procedure of generating a
credential upon request.

A ticket contains a nymble specific to a server, time period, and linkability window. ctxt is
encrypted data that the NM can use during a complaint involving the nymble ticket. In particular,
ctxt contains the first nymble (nymble∗) in the user’s sequence of nymbles, and the seed used to
generate that nymble. As will be explained later, upon a complaint, the NM can extract the user’s
seed and issue it to the server by evolving the seed, and nymble∗ helps the NM to recognize whether
the user has already been blacklisted.

The MACs macN and macNS are used by the NM and the server respectively to verify the
integrity of the nymble ticket as described in Algorithms 4 and 5. As will be explained later, the
NM will need to verify the ticket’s integrity upon a complaint from the server.

13

Algorithm 3 NMCreateCredential

Input: (pnym, sid ,w) ∈ P ×H× N
Persistent state: nmState ∈ SN

Output: cred ∈ D
1: Extract macKeyNP ,macKeyN , seedKeyN , encKeyN from keys in nmState
2: seed0 := f(Mac(pnym||sid ||w , seedKeyN))
3: nymble∗ := g(seed0)
4: for t from 1 to L do
5: seed t := f(seed t−1)
6: nymblet := g(seed t)
7: ctxt t := Enc.Encrypt(nymble∗||seed t , encKeyN)
8: ticket ′t := sid ||t ||w ||nymblet ||ctxt t
9: macN,t := MA.Mac(ticket ′t ,macKeyN)

10: macNS ,t := MA.Mac(ticket ′t ||macN,t ,macKeyNS)
11: tickets[t] := (t ,nymblet , ctxt t ,macN,t ,macNS ,t)
12: end for
13: return cred := (nymble∗, tickets)

Algorithm 4 NMVerifyTicket

Input: (sid , t ,w , ticket) ∈ H × N2 × T
Persistent state: svrState
Output: b ∈ {true, false}
1: Extract macKeyN from keys in nmState
2: (·,nymble, ctxt ,macN ,macNS) := ticket
3: content := sid ||t ||w ||nymble||ctxt
4: return macN

?= MA.Mac(content,macKeyN)

4.3.4 Blacklists

A server’s blacklist is a list of nymble∗’s corresponding to all the nymbles that the server has
complained about. Users can quickly check their blacklisting status at a server by checking to see
whether their nymble∗ appears in the server’s blacklist (see Algorithm 6).

Blacklist integrity It is important for users to be able to check the integrity and freshness of
blacklists, because otherwise servers could omit entries or present older blacklists and link users
without their knowledge. The NM signs the blacklist (see Algorithm 7), along with the server
identity sid , the current time period t, current linkability window w, and target (used for freshness,
explained soon), using its signing key signKeyN . As will be explained later, during a complaint
procedure, the NM needs to update the server’s blacklist, and thus needs to check the integrity of
the blacklist presented by the server. To make this operation more efficient, the NM also generates
a MAC using its secret key macKeyN (line 3). At the end of the signing procedure, the NM returns
a blacklist certificate (line 6), which contains the time period for which the certificate was issued,
a daisy (used for freshness, explained soon), mac and sig . Algorithms 8 and 9 describe how users
and the NM can verify the integrity and freshness of blacklists.

14

Algorithm 5 ServerVerifyTicket

Input: (t ,w , ticket) ∈ N2 × T
Persistent state: svrState
Output: b ∈ {true, false}
1: Extract sid ,macKeyNS from svrState
2: (·,nymble, ctxt ,macN ,macNS) := ticket
3: content := sid ||t ||w ||nymble||ctxt ||macN

4: return macNS
?= MA.Mac(content,macKeyNS)

Algorithm 6 UserCheckIfBlacklisted

Input: (sid , blist) ∈ H × Bn, n, ` ∈ N0

Persistent state: usrState ∈ SU

Output: b ∈ {true, false}
1: Extract nymble∗ from cred in usrEntries[sid] in usrState

2: return (nymble∗
?
∈ blist)

Blacklist freshness If the NM has signed the blacklist for the current time period, users can
simply verify the digital signature in the certificate to infer that the blacklist is both valid (not
tampered with) and fresh (since the current time period matches the time period in the blacklist
certificate). To prove the freshness of blacklists every time period, however, the servers would need
to get the blacklists digitally signed every time period, thus imposing a high load on the NM. To
speed up this process, we use a hash chain [EGM89, Mic02, HJP05] to certify that “blacklist from
time period t is still fresh.”

Each time the NM responds to a complaint request, it generates a new random seed daisyL

for a hash chain corresponding to time period L. It then computes daisyL−1, daisyL−2, . . . , daisy t

up to current time period t by successively hashing the previous daisy to generate the next with a
cryptographic hash function h. For example, daisy5 = h(daisy6). Note if the NM reveals daisy5, one
can compute daisy4, . . . , daisy1 by applying the hash function successively, but daisy6, . . . , daisyL

remain secret to the NM.
As outlined later (in Algorithm 13), target is set to daisy t. Now, until the next update to the

blacklist, the NM need only release daisies for the current time period instead of digitally signing
the blacklist. Given a certificate from an older time period and daisy t for current time period t,
users can verify the integrity and freshness of the blacklist by computing the target from daisy t.

4.3.5 Complaints and linking tokens

A server complains to the NM about a misbehaving user by submitting the user’s nymble ticket
that was used in the offending connection. The NM returns a seed, from which the server creates
a linking token, which contains the seed and the corresponding nymble.

Each server maintains a list of linking tokens created as above, called the linking-list, and
updates each token on the list every time period. When a user presents a nymble ticket for making
a nymble-connection, the server checks the nymble within the ticket against the nymbles in the
linking-list entries. A match indicates that the user has been blacklisted.

15

daisy1target daisy2
hh

daisyL
h h. . .

Figure 6: A chain of daisies. Given daisy i it is easy to verify the freshness of the blacklist by
applying h i times to obtain target. Only the NM can compute the next daisy i+1 in the chain.

Algorithm 7 NMSignBL

Input: (sid , t ,w , target , blist) ∈ H × N2 ×H× Bn, n ∈ N0

Persistent state: nmState ∈ SN

Output: cert ∈ C
1: Extract macKeyN , signKeyN from keys in nmState
2: content := sid ||t ||w ||target ||blist
3: mac := MA.Mac(content,macKeyN)
4: sig := Sig.Sign(content, signKeyN)
5: daisy := target
6: return cert := (t , daisy , t ,mac, sig)

4.4 Communication channels

Nymble distinguishes and utilizes three types of communication channels over which protocols are
executed, namely type-Basic, -Auth and -Anon, depending on the channels’ characteristics as shown
in Figure 7.

We assume that a public-key infrastructure (PKI) such as X.509 is in place, and that the NM,
the PM and all the servers in Nymble have obtained a PKI credential from a well-established and
trustworthy CA. (We stress that the users in Nymble, however, need not possess a PKI credential.)
These entities can thus realize type-Basic and type-Auth channels to one another by setting up a
TLS8 connection using their PKI credentials.

All users can realize type-Basic channels to the NM, the PM and any server, again by setting
up a TLS connection. Additionally, by setting up a TLS connection over the Tor anonymizing
network,9 users can realize a type-Anon channel to the NM and any server.

5 Our Nymble Construction

5.1 System setup

To set up the Nymble system, the NM and the PM interact as follows.

1. The NM executes NMInitState() (see Algorithm 10) and initializes its state nmState to the
algorithm’s output.

2. The NM extracts macKeyNP from nmState and sends it to the PM over a type-Auth channel.
8The Transport Layer Security Protocol Version 1.2. IETF RFC 5246. http://tools.ietf.org/rfc/rfc5246.

txt.
9While we acknowledge the existence of attacks on Tor’s anonymity, we assume Tor provides perfect

anonymity [FJS07] for the sake of arguing Nymble’s own anonymity guarantee.

16

http://tools.ietf.org/rfc/rfc5246.txt
http://tools.ietf.org/rfc/rfc5246.txt

Algorithm 8 VerifyBL

Input: (sid , t ,w , blist , cert) ∈ H × N2 × Bn × C, n ∈ N0

Output: b ∈ {true, false}
1: (td, daisy , ts,mac, sig) := cert
2: if td 6= t ∨ td < ts then
3: return false
4: end if
5: target := h(td−ts)(daisy)
6: content := sid ||ts||w ||target ||blist
7: return Sig.Verify(content, sig , verKeyN)

Algorithm 9 NMVerifyBL

Input: (sid , t ,w , blist , cert) ∈ H × N2 × Bn × C, n ∈ N0

Persistent state: nmState ∈ SN

Output: b ∈ {true, false}
1-6: Same as lines 1–6 in VerifyBL
7: Extract macKeyN from keys in nmState
8: return mac ?= MA.Mac(content,macKeyN)

macKeyNP is a shared secret between the NM and the PM, so that the NM can verify the
authenticity of pseudonyms issued by the PM.

3. The PM generates nymKeyP by running Mac.KeyGen() and initializes its state pmState to
the pair (nymKeyP ,macKeyNP).

4. The NM publishes verKeyN in nmState in a way that the users in Nymble can obtain it and
verify its integrity at any time (e.g., during registration).

5.2 Server registration

To participate in the Nymble system, a server with identity sid initiates a type-Auth channel to the
NM, and registers with the NM according to the Server Registration protocol below. Each server
may register at most once in any linkability window.

1. The NM makes sure that the server has not already registered: If (sid , ·, ·) ∈ nmEntries in
its nmState, it terminates with failure; it proceeds otherwise.

2. The NM reads the current time period and linkability window as tnow and wnow respectively,
and then obtains a svrState by running (see Algorithm 11)

NMRegisterServernmState(sid , tnow,wnow).

3. The NM appends svrState to its nmState, sends it to the Server, and terminates with success.

4. The server, on receiving svrState, records it as its state, and terminates with success.

17

Type Initiator Responder Link

Basic – Authenticated Confidential
Auth Authenticated Authenticated Confidential
Anon Anonymous Authenticated Confidential

Figure 7: Different types of channels utilized in Nymble.

Algorithm 10 NMInitState
Output: nmState ∈ SN

1: macKeyNP := Mac.KeyGen()
2: macKeyN := Mac.KeyGen()
3: seedKeyN := Mac.KeyGen()
4: (encKeyN , decKeyN) := Enc.KeyGen()
5: (signKeyN , verKeyN) := Sig.KeyGen()
6: keys := (macKeyNP ,macKeyN , seedKeyN ,
7: encKeyN , decKeyN , signKeyN , verKeyN)
8: nmEntries := ∅
9: return nmState := (keys,nmEntries)

In svrState, macKeyNS is a key shared between the NM and the server for verifying the authen-
ticity of nymble tickets; time lastUpd indicates the time period when the blacklist was last updated,
which is initialized to tnow, the current time period at registration.

5.3 User registration

A user with identity uid must register with the PM once each linkability window before acquiring
a credential during that linkability window. To do so, the user initiates a type-Basic channel to
the PM, followed by the User Registration protocol described below.

1. The PM checks if the user is allowed to register. In our current implementation, a user’s
identity is her IP address. The PM infers the registering user’s IP address from the commu-
nication channel, and makes sure that the IP address does not belong to a known Tor exit
node. If this is not the case, the PM terminates with failure.

2. Otherwise, the PM reads the current linkability window as wnow, and runs

pnym := PMCreatePseudonympmState(uid ,wnow).

The PM then gives pnym to the user, and terminates with success.

3. The user, on receiving pnym, sets her state usrState to (pnym, ∅), and terminates with success.

5.4 Credential acquisition

To establish a Nymble-connection to a server, a user must provide a valid ticket, which is acquired
as part of a credential from the NM. To acquire a credential for server sid during the current
linkability window, a registered user initiates a type-Anon channel to the NM, followed by the
Credential Acquisition protocol below.

18

Algorithm 11 NMRegisterServer

Input: (sid , t ,w) ∈ H × N2

Persistent state: nmState ∈ SN

Output: svrState ∈ SS

1: (keys,nmEntries) := nmState
2: macKeyNS := Mac.KeyGen()
3: daisyL ∈R H
4: nmEntries ′ := nmEntries||(sid ,macKeyNS , daisyL, t)
5: nmState := (keys,nmEntries ′)
6: target := h(L−t+1)(daisyL)
7: blist := ∅
8: cert := NMSignBLnmState(sid , t ,w , target , blist)
9: svrState := (sid ,macKeyNS , blist , cert , ∅, ∅, ∅, t)

10: return svrState

1. The user extracts pnym from usrState and sends the pair (pnym, sid) to the NM.

2. The NM reads the current linkability window as wnow. It makes sure the user’s pnym is valid:
If

NMVerifyPseudonymnmState(pnym,wnow)

returns false, the NM terminates with failure; it proceeds otherwise.

3. The NM runs
NMCreateCredentialnmState(pnym, sid ,wnow),

which returns a credential cred . The NM sends cred to the user and terminates with success.

4. The user, on receiving cred , creates usrEntry := (sid , cred , false), appends it to its state
usrState, and terminates with success.

5.5 Nymble-connection establishment

To establish a connection to a server sid , the user initiates a type-Anon channel to the server,
followed by the Nymble-connection establishment protocol described below, which is also illustrated
in Figure 8.

5.5.1 Blacklist validation

1. The server sends 〈blist , cert〉 to the user, where blist is its blacklist for the current time period
and cert is the certificate on blist . (We will describe how the server can update its blacklist
soon.)

2. The user reads the current time period and linkability window as t (U)
now and w (U)

now and assumes
these values to be current for the rest of the protocol.

3. For freshness and integrity the user checks if

VerifyBLusrState(sid , t (U)
now,w (U)

now, blist , cert) = true.

19

< blist, cert >

< ticket >

< okay >

User Server

ticket not linked?

ticketDisclosed := true

Read current t and w

Read current t and w

blist valid?

safe := not blacklisted and not ticketDisclosed
safe?

ticket valid?

Blacklist validation

Privacy check

Ticket examination

okay?

Figure 8: The Nymble-connection Establishment protocol.

If not, she terminates the protocol with failure.

5.5.2 Privacy check

Since multiple connection-establishment attempts by a user to the same server within the same
time period can be linkable, the user keeps track of whether she has already disclosed a ticket to
the server in the current time period by maintaining a boolean variable ticketDisclosed for the
server in her state.

Furthermore, since a user who has been blacklisted by a server can have her connection-
establishment attempts linked to her past establishment, the user must make sure that she has
not been blacklisted thus far.

Consequently, if ticketDisclosed in usrEntries[sid] in the user’s usrState is true, or

UserCheckIfBlacklistedusrState(sid , blist) = false,

then it is unsafe for the user to proceed with the protocol; the user terminates the protocol with
failure.

5.5.3 Ticket examination

1. The user sets ticketDisclosed in usrEntries[sid] in usrState to true. She then sends 〈ticket〉
to the server, where ticket is ticket [t (U)

now] in cred in usrEntries[sid] in usrState.

20

Algorithm 12 ServerLinkTicket
Input: ticket ∈ T
Persistent state: svrState ∈ SS

Output: b ∈ {true, false}
1: Extract lnkng-tokens from svrState
2: (·,nymble, · · ·) := ticket
3: for all i = 1 to |lnkng-tokens| do
4: if (·,nymble) = lnkng-tokens[i] then
5: return true
6: end if
7: end for
8: return false

Note that the user discloses ticket for time period t (U)
now after verifying blist ’s freshness for

t (U)
now. This procedure avoids the situation in which the user verifies the current blacklist just
before a time period ends, and then presents a newer ticket for the next time period.

2. On receiving 〈ticket〉, the server reads the current time period and linkability window as t (S)
now

and w (S)
now respectively. The server then checks that:

• ticket is fresh, i.e., ticket 6∈ slist in server’s state.

• ticket is valid, i.e., on input (t (S)
now,w (S)

now, ticket), the algorithm ServerVerifyTicket
returns true. (See Algorithm 5.)

• ticket is not linked (in other words, the user has not been blacklisted), i.e.,

ServerLinkTicketsvrState(ticket) = false.

(See Algorithm 12.)

3. If any of the checks above fails, the server sends 〈goodbye〉 to the user and terminates with
failure. Otherwise, it adds ticket to slist in its state, sends 〈okay〉 to the user and terminates
with success.

4. On receiving 〈okay〉, the user also terminates with success.

5.6 Service provision and access logging

If both the user and the server terminate with success in the Nymble-connection Establishment
described above, the server may start serving the user over the same channel. The server records
ticket and logs the access during the session for a potential complaint in the future.

5.7 Auditing and filing for complaints

If at some later time the server desires to blacklist the user behind a Nymble-connection, during
the establishment of which the server collected ticket from the user, the server files a complaint by
appending ticket to cmplnt-tickets in its svrState.

21

Filed complaints are batched up. They are processed during the next blacklist update (to be
described next).

5.8 Blacklist update

Servers update their blacklists for the current time period for two purposes. First, as mentioned
earlier, the server needs to provide the user with its blacklist (and blacklist certificate) for the
current time period during a Nymble-connection establishment. Second, the server needs to be able
to blacklist the misbehaving users by processing the newly filed complaints (since last update).

The procedure for updating blacklists (and their certificates) differs depending on whether
complaints are involved. At a high level, when there is no complaint (i.e., the server’s cmplnt-tickets
is empty), blacklists stay unchanged; the certificates need only a “light refreshment.” When there
are complaints, on the other hand, new entries are added to the blacklists and certificates need to
be regenerated.

Our current implementation employs “lazy” update: the server updates its blacklist upon its
first Nymble-connection establishment request in a time period.

5.8.1 Without complaints

1. The server with identity sid initiates a type-Auth channel to the NM, and sends a request to
the NM for a blacklist update.

2. The NM reads the current time period as tnow. It extracts tlastUpd and daisyL from nmEntry
for sid in nmState. If tlastUpd is tnow, the server has already updated its blacklist for the
current time period, and the NM hence terminates the protocol as failure.

3. Otherwise, the NM updates tlastUpd to tnow. It computes daisy ′ := h(L−tnow+1)(daisyL) and
sends (tnow, daisy ′) to the server.

4. The server replaces td and daisy in cert in blist in its svrState with tnow and daisy ′ respectively.

5.8.2 With complaints

1. The server with identity sid initiates a type-Auth channel to the NM and sends
(blist , cert , cmplnt-tickets) from its svrState as a blacklist update request.

2. The NM reads the current time period as t (N)
now. It runs

NMHandleComplaintsnmState

on input (sid , tnow,wnow, blist , cert , cmplnt-tickets). (See Algorithm 15.) If the algorithm
returns ⊥, the NM considers the update request invalid, in which case the NM terminates
the protocol as failure.

3. Otherwise, the NM relays the algorithm’s output (blist ′, cert ′, seeds), to the server.

4. The server updates its state svrState as follows. It replaces blist and cert with blist ||blist ′
and cert ′ respectively, and sets cmplnt-tkts to ∅. For each seed ∈ seeds, the server creates a
token as (seed , g(seed)) and appends it to lnkng-tokens. Finally, the server terminates with
success.

22

Algorithm 13 NMComputeBLUpdate

Input: (sid , t ,w , blist , cmplnt-tickets) ∈ H × N2 × Bn × T m

Persistent state: nmState ∈ SN

Output: (blist ′, cert ′) ∈ Bm × C
1: (keys,nmEntries) := nmState

2:

(
·,macKeyN , seedKeyN ,
encKeyN , ·, signKeyN , ·

)
:= keys

3: for i = 1 to m do
4: (·, ·, ctxt , ·, ·) := cmplnt-tickets[i]
5: nymble∗||seed := Decrypt(ctxt , decKeyN)
6: if nymble∗ ∈ blist then
7: blist ′[i] ∈R H
8: else
9: blist ′[i] := nymble∗

10: end if
11: end for
12: daisy ′L ∈R H
13: target ′ := h(L−t+1)(daisy ′L)
14: cert ′ := NMSignBL(sid , t ,w , target ′, blist ||blist ′)
15: Replace daisyL and tlastUpd in nmEntries[sid] in nmState with daisy ′L and by t respectively
16: return (blist ′, cert ′)

We now explain what NMHandleComplaints does. The algorithm first checks the integrity and
freshness of the blacklist (lines 2–6) and that the NM hasn’t already updated the server’s blacklist
for the current time period. It then checks if all complaints are valid for some previous time period
during the current linkability window (lines 8–13). Finally, the algorithm prepares an answer
to the update request by invoking NMComputeBLUpdate and NMComputeSeeds (see Algorithm 14)
(lines 16–19).

NMComputeBLUpdate (see Algorithm 13) creates new entries to be appended to the server’s
blacklist. Each entry is either the actual nymble∗ of the user being complained about if the user
has not been blacklisted already, or a random nymble otherwise. This way, the server cannot learn
if two complaints are about the same user, and thus cannot link the Nymble-connections to the
same user. NMComputeSeeds (see Algorithm 14) uses the same trick when computing a seed that
enables the server to link a blacklisted user.

5.9 Periodic update

5.9.1 Per time period

At the end of each time period that is not the last of the current linkability window, each registered
server updates its svrState by running (see Algorithm 8)

ServerUpdateStatesvrState(),

which prepares the linking-token-list for the new time period. Each entry is updated by evolving
the seed and computing the corresponding nymble.

23

Algorithm 14 NMComputeSeeds

Input: (t , blist , cmplnt-tickets) ∈ N× Bn × T m

Persistent state: nmState ∈ SN

Output: seeds ∈ Hm

1: Extract decKeyN from keys in nmState
2: for all i = 1 to m do
3: (t ′,nymble, ctxt , · · ·) := cmplnt-tickets[i]
4: nymble∗||seed := Enc.Decrypt(ctxt , decKeyN)
5: if nymble∗ ∈ blist then
6: seeds[i] ∈R H
7: else
8: seeds[i] := f (t−t ′)(seed)
9: end if

10: end for
11: return seeds

Each registered user sets ticketDisclosed in every usrEntry in usrState to false, signaling that
the user has not disclosed any ticket in the new time period.

5.9.2 Per linkability window

At the beginning of each linkability window, all the entities, i.e., the PM, the NM, the servers and
the users erase their state and start afresh. In other words, the NM and the PM must re-setup
Nymble for the new current linkability window and all servers and users must re-register if they
still want to use Nymble.

6 Evaluation

6.1 Security

We state the following theorem regarding the security of our Nymble construction. Its proof will
be given in Section 8.

Theorem 1 Our Nymble construction has Blacklistability, Rate-limiting, Anonymity and Non-
frameability, provided that the listed trust assumptions hold true, and the cryptographic primitives
used are secure. ut

6.2 Performance

6.2.1 Implementation and experimental setup

We implemented Nymble as a C++ library along with Ruby and JavaScript bindings. We chose
Ruby because of our familiarity with the language, and JavaScript because it is the de facto language
for Firefox extensions, which we use for the client-side interface. One could, however, easily compile
bindings for any of the languages (such as Python, PHP, and Perl) supported by the Simplified
Wrapper and Interface Generator (SWIG) for example. We utilize OpenSSL as it supports all the
cryptographic primitives that we need.

24

Algorithm 15 NMHandleComplaints

Input: (sid , t ,w , blist , cert , cmplnt-tickets) ∈ H × N2 × Bn × C × T m

Persistent state: nmState ∈ SN

Output: (blist ′, cert ′, seeds) ∈ Bm × C ×Hm

1: Extract time lastUpd from nmEntries[sid] in nmState
2: b1 := (time lastUpd < t)
3: b2 :=
4: NMVerifyBLnmState(sid , time lastUpd,w , blist , cert)
5: if ¬(b1 ∧ b2) then
6: return ⊥
7: end if
8: for all i = 1 to m do
9: ticket := cmplnt-tickets[i]; (t̃ , · · ·) := ticket

10: bi1 := t̃ < t
11: bi2 := NMVerifyTicketnmState(sid , t̃ ,w , ticket)
12: if ¬(bi1 ∧ bi2) then
13: return ⊥
14: end if
15: end for
16: (blist ′, cert ′) :=
17: NMComputeBLUpdatenmState(sid , t ,w , blist , cert)
18: seeds :=
19: NMComputeSeedsnmState(t , blist , cmplnt-tickets)
20: return (blist ′, cert ′, seeds)

We use SHA-256 for the cryptographic hash functions; HMAC-SHA-256 for the message authen-
tication MA; AES-256 in CBC-mode for the symmetric encryption Enc; and 2048-bit RSASSA-PSA
for the digital signatures Sig. We chose RSA over DSA for digital signatures because of its faster
verification speed — in our system, verification occurs more often than signing.

We evaluated our system on a 2.2 GHz Intel Core 2 Duo Macbook Pro with 4 GB of RAM.
The PM, the NM, and the server were implemented as Mongrel (Ruby’s version of Apache) servers.
The user portion was implemented as a Firefox 3 extension in JavaScript with bindings to the
Nymble C++ library wrapped as an XPCOM component. We evaluated protocol performance and
data-structure size. For each experiment relating to protocol performance, we ran the experiment
10 times and averaged the results. The evaluation of data-structure sizes is the byte count of the
marshalled data structures that would be sent over the network.

6.2.2 Experimental results

Figure 9 shows the size in bytes of the various data structures. The X-axis represents the number of
entries in each data structure — complaints in the blacklist update request, tickets in the credential
(equal to L, the number of time periods in a linkability window), nymbles in the blacklist, tokens
and seeds in the blacklist update response, and nymbles in the blacklist. For example, a linkability
window of 1 day with 5 minute time periods equates to L = 288. The size of a credential in this
case is about 59 KB. The size of a blacklist update request with 50 complaints is roughly 11 KB,

25

Algorithm 16 ServerUpdateState

Persistent state: svrState ∈ SS

1: Extract lnkng-tokens from svrState
2: for all i = 1 to |lnkng-tokens| do
3: (seed ,nymble) := lnkng-tokens[i]
4: seed ′ := f(seed); nymble ′ := g(seed ′)
5: tokens ′[i] := (seed ′,nymble ′)
6: end for
7: Replace lnkng-tokens in svrState with tokens ′

8: Replace seen-tickets in svrState with ∅

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

Si
ze

 (K
B)

Number of Entries

Blacklist update request
Credential

Blacklist update response
Blacklist

Figure 9: The marshaled size of various Nymble data structures. The X-axis refers to the number
of entries — complaints in the blacklist update request, tickets in the credential, tokens and seeds
in the blacklist update response, and nymbles in the blacklist.

whereas the size of a blacklist update response for the same amount of complaint requests is only
about 4 KB. The size of a blacklist (downloaded by users before each connection) with 500 nymbles
is 17 KB.

In general, each structure grows linearly as the number of entries increases. Credentials and
blacklist update requests grow at the same rate because a credential is a collection of tickets which
is more or less what is sent as a complaint list when the server wishes to update its blacklist. In
our implementation we use Google’s Protocol Buffers to (un)marshal these structures because it is
cross-platform friendly and language-agnostic.

Figure 10(a) shows the amount of time it takes the NM to perform various protocols. It takes
about 9 ms to create a credential when L = 288. Note that this protocol occurs only once every
linkability window for each user wanting to connect to a particular server. For blacklist updates, the
initial jump in the graph corresponds to the fixed overhead associated with signing a blacklist. To
execute the update blacklist protocol with 500 complaints it takes the NM about 54 ms. However,
when there are no complaints, it takes the NM on average less than a millisecond to update the
daisy.

Figure 10(b) shows the amount of time it takes the server and user to perform various protocols.
These protocols are relatively inexpensive by design, i.e., the amount of computation performed

26

 0

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000

Ti
m

e
(m

s)

Number of Entries

Credential acquisition
Blacklist update

(a) Blacklist updates take several milliseconds and credentials
can be generated in 9 ms for the suggested parameter of L=288.

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000

Ti
m

e
(m

s)

Number of Entries

User blacklist validation and privacy check
Server blacklist update

Server update state
Server ticket examination

(b) The bottleneck operation of server ticket examination is less
than 1 ms and validating the blacklist takes the user only a few
ms.

Figure 10: Nymble’s performance at (a) the NM and (b) the user and the server when performing
various protocols.

by the users and servers should be minimal. For example, it takes less than 3 ms for a user to
execute a security check on a blacklist with 500 nymbles. Note that this figure includes signature
verification as well, and hence the fixed-cost overhead exhibited in the graph. It takes less than a
millisecond for a server to perform authentication of a ticket against a blacklist with 500 nymbles.
We implemented these protocols as a linear search through a blacklist’s list of nymbles because of
the negligible overhead even for lists with thousands of entries. More efficient data structures (such
as a hash table) do not seem necessary, but they would protect against timing attacks, and we
leave that for future work. Every time period, a server must update its state and blacklist. Given
a linking list with 500 entries, the server will spend less than 2 ms updating the linking list. If the
server were to issue a blacklist update request with 500 complaints, it would take less than 3 ms
for the server to update its blacklist.

27

7 Security Formalism

To formalize the security goals of Nymble, we model an environment in which the adversary can
interact in virtually the same way as a real-world attacker would with the Nymble system. Each
security goal is defined as a game in which the adversary aims to win; a Nymble construction
achieves a security goal if and only if no (efficient) adversary can win in the corresponding game
with probability non-negligibly greater than a particular value.

To argue the security of our Nymble construction, we adopt the “reductionist” approach: we
assume that a game-winning Adversary A exists, and then construct—and hence show the existence
of—a Probabilistic Poly-Time (PPT) algorithm called the Simulator S, which can be used to violate
some facts or well-established assumptions, thereby arriving at a contradiction.

We formalize the security of Nymble assuming that there is only one linkability window. In
Section 8, we discuss how the security arguments apply across linkability windows.

7.1 Oracles

To simulate an environment for the Adversary A, the Simulator S maintains a set of states and
operates a set of oracles to answer arbitrary and possibly adaptive queries to those oracles made
by A. S maintains the following state: sets UH , UC , SH , SC , C, T and B, initially set to empty,
and integers IS , IU , IC , IT and IB, initially set to one. Also, S maintains the current time period
tnow, initially set to one.

The following specifies how S operates the oracles to answer the queries made by A.

• The User (resp. Server) Registration Oracle, OUR (resp. OSR), allows the adversary
to have an honest user (resp. server) register into the system. Upon query with input id , S

simulates an execution of the User (resp. Server) Registration protocol between an honest user
(resp. server) with identity id and the NM (resp. PM). Let π be the protocol communications
transcript. If the protocol terminates with failure at the PM (resp. NM), S returns (⊥, π).
Otherwise S indexes the newly registered user (resp. server) as i := IU (resp. j := IS),
updates UH := UH ∪ {(i, id)} (resp. SH := SH ∪ {(j, id)}), increments IU (resp. IS), and
returns (i, π) (resp. (j, π)).

• The Corrupt-User (resp. Corrupt-Server) Registration Oracle, OCUR (resp. OCSR),
allows a corrupt user (resp. server) to register into the system. Upon query with input id ,
S interacts with A according to the User (resp. Server) Registration protocol, in which A

plays the role of the user (resp. server) with identity id and S plays the role of the PM
(resp. NM). If the protocol terminates with failure at the PM (resp. NM), S returns ⊥.
Otherwise, S indexes the newly registered user (resp. server) as i := IU (resp. j := IS),
updates UC := UC ∪ {(i, id)} (resp. SC := SC ∪ {(j, id)}), increments IU (resp. IS), and
returns i (resp. j).

We disallow the adversary to corrupt an honest user or server when the concerned entity
is currently involved in one or more other oracle queries. This restriction imposes little
reduction on the adversary’s capability because, in reality, it is highly likely that an attacker
who manages to corrupt a user or a server in the middle of a protocol run has the ability to
corrupt the entity a little bit earlier, before that protocol run has started.

28

• The User (resp. Server) Corruption Oracle, OUC (resp. OSC), allows the adversary
to corrupt an honest registered user (resp. server). Upon query with input i (resp. j), if
(i, ·) 6∈ UH (resp. (j, ·) 6∈ SH), S returns ⊥. Otherwise S removes (i, id) from UH (resp.
(j, id) from SH), adds (i, id) to UC (resp. (j, id) to SC), and returns the current state of user
i (resp. server j).

• The Credential Acquisition Oracle, OCA, allows the adversary to have an honest regis-
tered user acquire a credential. Upon query with input (i, sid), if (i, ·) 6∈ UH , S returns ⊥.
Otherwise, S simulates an execution of the Credential Acquisition protocol between honest
user i and the NM, in which the user desires to acquire a credential for connecting to a server
sid . Let π be the protocol communications transcript. If the protocol terminates with failure
at the NM, S returns (⊥, π). Otherwise, S indexes the newly issued credential as k := IC ,
updates C := C ∪ {(k, i, sid)}, increments IC , and returns (k, π).

• The Credential Acquisition With Corrupt-User Oracle, OCACU , allows a corrupt
user to acquire a credential. Upon query with input sid , S interacts with A according to
the Credential Acquisition protocol, in which A plays the role of a user acquiring a credential
to connect to a server sid and S plays the role of the NM. If the protocol terminates with
failure at the NM, S returns ⊥. Otherwise S indexes the newly issued credential as k := IC ,
updates UC := UC ∪ {(k,⊥, sid)}, increments IC , and returns k.

• The Connection Establishment Oracle, OCE , allows the adversary to have an honest
user establish a Nymble-connection to an honest server. Upon query with input (i, sid),
if (i, ·) 6∈ UH or (·, sid) 6∈ SH , S returns ⊥. Otherwise, S simulates an execution of the
Nymble-connection Establishment protocol between user i and server j, where j is such that
(j, sid) ∈ SH and is unique.

Let π be the protocol communications transcript, the boolean bT be whether
ExtractTicket(π) 6= ⊥, and the booleans bU and bS be whether the protocol terminates
with success at the user and the server respectively. S indexes the connection establishment
as ` := IT , sets res := (`, tnow, bT , bU , bS , π), updates T := T ∪ {(i, j, sid , res)}, increments
IT , and finally returns res.

In the above, we have written ExtractTicket(π) to denote the ticket sent by the user during
the run. If the user terminated before sending a ticket, then ExtractTicket(π) is by definition
the special symbol ⊥.

• The Connection Establishment With Corrupt-User Oracle, OCECU , allows a corrupt
user to establish a Nymble-connection to an honest server. Upon query with input sid , if
(·, sid) 6∈ SH , S returns ⊥. Otherwise, S interacts with A according to the Nymble-connection
Establishment protocol, in which A plays the role of the user and S plays the role of server
j, where j is such that (j, sid) ∈ SH and is unique.

Let π be the protocol communications transcript, the boolean bT be whether
ExtractTicket(π) 6= ⊥, and the boolean bS be whether the protocol terminates with
success at the server. S indexes the connection establishment as ` := IT , sets res :=
(`, tnow, bT ,⊥, bS , π), updates T := T ∪ {(i, j, sid , res)}, increments IT , and returns res.

• The Connection Establishment With Corrupt-Server Oracle, OCECS , allows the ad-
versary to have an honest user establish a Nymble-connection to a corrupt server. Upon query

29

with input (i, sid), if (i, ·) 6∈ UH , S returns ⊥. Otherwise S interacts with A according to
the Nymble-connection Establishment protocol, in which S plays the role of honest user i and
A plays the role of the server sid .

Let π be the protocol communications transcript, the boolean bT be whether
ExtractTicket(π) 6= ⊥, and the boolean bU be whether the protocol terminates with
success at the user. S indexes the connection establishment as ` := IT , sets res :=
(`, tnow, bT , bU ,⊥, π), updates T := T ∪ {(i,⊥, sid , res)}, increments IT , and returns res.

• The Blacklist Update Oracle, OBU , allows the adversary to have an honest
server update its blacklist. Upon query with input (sid , T), if (·, sid) 6∈ SH or
(·, ·, sid , (·, ·, true, ·, true, π)) 6∈ T for some π such that ExtractTicket(π) ∈ T , S returns ⊥.
Otherwise, S simulates an execution of the Blacklist Update protocol between honest server
j, where j is such that (j, sid) ∈ SH , and the NM, in which server j updates its blacklist with
a set of newly complained tickets T .

Let π be the protocol communications transcript and the booleans bS and bN be whether the
protocol terminates with success at the server and at the NM respectively. S indexes the
blacklist update as µ := IB, sets res := (µ, tnow, bS , bN , π), updates B := B∪ {(j,⊥, T , res)},
increments IB, and returns res.

• The Blacklist Update With Corrupt-Server Oracle, OBUCS , allows a corrupt server
to update its blacklist. Upon query with input (sid , T), S interacts with A according to the
Blacklist Update protocol, in which A plays the role of the server sid who desires to update
its blacklist with a set of newly complained tickets T , and S plays the role of the NM.

Let π be the protocol communications transcript and the boolean bN be whether the protocol
terminates with success at the NM. S indexes the blacklist update as µ := IB, sets res :=
(µ, tnow, bS , bN , π), updates B := B ∪ {(⊥, sid , T , res)}, increments IB, and returns res.

• The Time Oracle, OT , allows the adversary to elapse time. Upon query, if tnow < L, S

simulates, for all i ∈ UH and j ∈ SH , an execution of the Periodic Update algorithm for user
i and server j, increments tnow, and finally returns the incremented tnow. Otherwise (i.e.,
tnow = L), S returns ⊥.

7.2 Game-Accountability

A Nymble construction has the security properties Blacklistability and Rate-limiting if no PPT
adversary A can win, with non-negligible probability (in the size of the security parameters), in
Game-Accountability played against the Simulator S as defined below.

1. Setup Phase. S plays the role of the NM and the PM and executes the System Setup
protocol (Section 5.1) on a sufficiently large λ. S keeps nmState and pmState secret and
gives all public parameters to A.

2. Probing Phase. A may arbitrarily and adaptively query all the oracles.

3. End Game Phase. A declares to end the game.

Denote by Q the sequence of oracle queries made by A throughout the game in chronological
order. A wins in the game if one or more of the following criteria is met:

30

• Criterion 1. Some honest registered server terminated with success in two or more runs of
the Nymble-connection Establishment protocol during the same time period (according to the
server’s clock), even though they were all initiated by the same honest registered user.

Formally, there exist i, sid and t such that Q contains the subsequence:

Q′ =
(

(`, t, ·, ·, true, ·) ← OCE (i, sid),
(`′, t, ·, ·, true, ·) ← OCE (i, sid)

)
,

where y ← O(x) denotes a query to O on input x that resulted in output y.

• Criterion 2. Some run of the Blacklist Update protocol (with or without complaints) between
some honest registered user and some honest registered server terminated with failure at one
or both ends.

Formally, there exists sid , T , bS and bN such that bS ∧ bN = false and Q contains:

(·, ·, false, ·, ·)← OBU (sid , T).

• Criterion 3. Some honest registered server terminated with success in some run of the
Nymble-connection Establishment protocol initiated by some honest registered user, even
though the server had by then already terminated with success in some run of the Black-
list Update protocol, in which the server complained about the user (by including in the
update request some ticket disclosed by the user).

Formally, there exist i, sid , π, T , t and t′ such that ExtractTicket(π) ∈ T , t < t′ and Q
contains the subsequence:

Q′ =

 (·, ·, ·, ·, true, π) ← OCE (i, sid),
(·, t, true, ·, ·) ← OBU (sid , T),
(·, t′, ·, ·, true, ·) ← OCE (i, sid)

 .

• Criterion 4. Some honest server terminated with success in some run of the Nymble-
connection Establishment protocol initiated by the adversary, even though, for each of the
then corrupt users, the server had by then already (i) terminated with success in some run
of the Nymble-connection Establishment protocol during the same time period (according to
the server’s clock) that was initiated by the user, or (ii) terminated with success in some run
of the Blacklist Update protocol, in which the server complained about the user (by including
in the update request some ticket disclosed by the user).10

Formally, there exist sid , m, n, (ti, Ti, t̃i, πi) for i = 1 to n and tn+1 such that m,n ≥ 0,
m + n > |UC |, t̃i < ti+1 for all i = 1 to n, ExtractTicket(πi) ∈ Ti for all i = 1 to n, and Q

10While the user might still have been honest during the concerned disclosure, we assume that the user were already
corrupt. We can make this assumption because it gives the adversary no less power in the attack.

31

contains the subsequences:

Q′ =



(·, t1, ·, ·, true, π1) ← OCECU (sid),
(·, t̃1, true, ·, ·) ← OBU (sid , T1),
(·, t2, ·, ·, true, π2) ← OCECU (sid),
(·, t̃2, true, ·, ·) ← OBU (sid , T2),

...
(·, tn, ·, ·, true, πn) ← OCECU (sid),
(·, t̃n, true, ·, ·) ← OBU (sid , Tn),


,

and

Q′′ =


(·, tn+1, ·, ·, true, ·) ← OCECU (sid),
(·, tn+1, ·, ·, true, ·) ← OCECU (sid),

...
(·, tn+1, ·, ·, true, ·) ← OCECU (sid)

 .

7.3 Game-Non-Frameability

A Nymble construction has Non-frameability if no PPT adversary A can win, with non-negligible
probability (in the size of the security parameters), in Game-Non-Frameability played against the
Simulator S as defined below.

1. Setup. Same as in Game-Accountability.

2. Probing phase. Same as in Game-Accountability.

3. End game phase. A declares to end the game.

Denote by Q the sequence of oracle queries made by A throughout the game in chronological
order. A wins in the game if:

• Criterion. Some run of the Nymble-connection establishment protocol between some hon-
est registered user and some honest registered server in some time period terminated with
failure at one or both ends, even though the user had not by then disclosed a ticket to the
server during the time period (according to the user’s clock), and the server had not by then
terminated with success in some run of the Blacklist Update protocol in which the server
complained about the user (by including in the update request some ticket disclosed by the
user).

Formally, there exist i, sid and t such that:

– Q contains (·, t, ·, bU , bS , ·)← OCE (i, sid) for some bU ∧ bS = false,

– Q does not contain any (·, t, ·, ·, true, ·)← OCE (i, sid), and

– if Q contains, for some π, T and t̃,

(·, ·, ·, ·, true, π)← OCE (i, sid) and (·, t̃, true, ·, ·)← OBU (sid , T),

then ExtractTicket(π) 6∈ T or t̃ ≥ t.

32

7.4 Game-Anonymity

7.4.1 The anonymity sets

In Section 3.1.3, we have informally talked about the “legitimacy” of a honest registered user. Here
we give a formal definition.

Denote by Q the sequence of oracle queries made by A thus far during the game defining
Anonymity (to be described soon) in chronological order. We say that an honest registered user
i∗ is illegitimate at time period t∗ according to the (possibly corrupt or impersonated) server with
identity sid∗ if at least one of the following criteria holds true:

• Criterion 1. The user had by then disclosed a ticket to the server in some run of the Nymble-
connection Establishment protocol during time period t∗ (according to the user’s clock).

Formally, Q contains, for some τ 6= ⊥,

(·, t∗, true, ·, ·, ·)← OCE/CECS (i∗, sid∗).

• Criterion 2. The server had by then terminated with success in some run of the Blacklist
Update protocol, in which the server complained about the user (by including a ticket disclosed
by the user).

Formally, there exist π, T , t such that ExtractTicket(π) ∈ T , t < t∗ and Q contains

(·, ·, true, ·, ·, π) ← OCE/CECS (i∗, sid∗), and
(·, t, ·, true, ·) ← OBU/BUCS (sid∗, T).

Thus, an honest registered user i∗ is legitimate at time period t∗ according to (possibly corrupt
or impersonated) server sid∗ if she is not illegitimate.

Figure 11 depicts the concept.

(a)

(b)

Disclosed
a ticket in t*

Not disclosed
a ticket in t* (yet)

No ticket
blacklisted
before t*

(c)

Some ticket(s)
blacklisted
before t*

Figure 11: The universe of all honest registered users is partitioned into two anonymity sets ac-
cording to the behavior of both the users and the (possibly malicious) server. Regions (a) and
(b) together represent the anonymity set of the illegitimate users; region (c) represents that of the
legitimate users.

33

7.4.2 The game

A Nymble construction has Anonymity if no PPT adversary A can win, with probability non-
negligibly (in the size of the security parameters) greater than 1/2, in Game-Anonymity played
against the Simulator S as defined below.

1. Setup. Same as in Game-Accountability.

2. Probing Phase I. Same as in Game-Accountability.

3. Challenge Phase. A decides on i∗0 6= i∗1 and sid∗ such that the following criterion holds:

• Criterion. Either both users i∗0 and i∗1 are legitimate, or they are both illegitimate,
according to the server with identity sid∗.

A queries OCE (⊥, sid∗) or OCECS (⊥, sid∗), i.e., without specifying i. S flips a fair coin
b̂ ∈R {0, 1} and answers the query assuming i = ib̂.

4. Probing Phase II. Same as Probing Phase I, with the additional restriction that the criterion
above must still hold.

5. End Game Phase. A returns guess b̃ ∈ {0, 1} on b̂.

A wins in the game if b̃ = b̂.

8 Security Analysis

We sketch the proof of Theorem 1.

8.1 Accountability

The honesty of the PM and the security of HMAC together imply that a coalition of c users, each
with a unique identity, can get at most c pseudonyms that will be verified to be valid at the NM.
Since the NM is also honest, these c valid pseudonyms enable each user to acquire a credential from
the NM for connecting to a given server. Thus, given a time period, the coalition has at most c
tickets that will be verified by the server to be valid.

Due to the honesty of both the server and the NM and the security of the HMAC, there does
not exist a valid ticket that is not one of those c tickets. Since reused tickets will always result in a
failed connection establishment at an honest server, the coalition can successfully establish at most
c connections at the server in any time period, each time using a different one of those c tickets,
regardless of the server’s blacklisting.

Next, we observe that if the NM and the server are honest, then the server can always success-
fully blacklist the ticket used in a connection establishment in which the server terminated with
success. The reason is the following. An honest verifier terminates with success in a connection
establishment protocol only if the ticket is verified to be valid, which will also be verified by the
NM to be valid, as long as HMAC and digital signature are secure. Since an honest server com-
plains only about valid tickets presented to it, the NM will always terminate with success during a
blacklist update.

34

Now it suffices to show that, for each of those c tickets, call it ticket∗, if the owner of the ticket,
say user i∗, owns another ticket, call it ticket ′, that was used in a previous successful connection
establishment, index it k′, to an honest server j∗, and ticket ′ has been blacklisted in some time
period t′, then establishing a connection to server j∗, index it k∗, during any time period t∗ > t′ by
presenting ticket∗ will fail.

Let us assume the contrary that connection establishment k∗ was successful. Since connection
establishments k′ and k∗ were successful, ticket ′ and ticket∗ must be valid. The nymble in each
of them was thus correctly computed according to user i∗ identity. The two nymbles are thus two
nodes on a hash chain, separated by a distance of (t∗−t′). Now since the NM is honest and the server
has successfully blacklisted tkt′ and updates its linking list honestly, the ServerLinkTicket will
return fail on input ticket∗. The establishment k∗ should have failed, and hence the contradiction.

8.2 Non-Frameability

Assume the contrary that the adversary successfully framed honest user i∗ with respect to honest
server j∗ in time period t∗. Then user i∗ failed to establish a connection, index it k∗, to server j in
time period t∗, and yet the user was legitimate according to the server at that moment, i.e., user
i∗ had not yet disclosed a ticket to server j∗ in time period t∗, and the tickets disclosed by user i∗

had not been blacklisted successfully by the server up until the beginning of time period t∗.
Since the establishment k∗ failed and both user i∗ and server j∗ were honest, the ticket presented,

call it ticket∗, during the establishment had been seen by server j∗, or it was invalid or linked. By
arguments similar to those in Blacklistability, an adversary who has not corrupted user i∗ cannot
forge user i∗’s tickets. Thus, server j∗ had not seen ticket∗. Also, since the PM, the NM, user i∗

and server j∗ were honest, ticket∗ must have been valid. Consequently, ticket∗ was linked.
The fact that ticket∗ was linked implies that there exists an entry (seed∗,nymble∗) in server j∗’s

linking list such that the nymble in ticket∗ equals nymble∗. The existence of the entry means that
the honest server j∗ had blacklisted a ticket, call it ticketb, and complained about it in a successful
blacklist update protocol in some time period tu < t∗ such that the returned seedu evolves to seed∗.
Since the NM was honest and the blacklist update was successful, ticketb was valid and it can thus
be similarly argued that it was created by the honest NM for a particular user ĩ.

If ĩ 6= i∗, then user ĩ’s seed0 is different from user i∗’s seed0 so long as the PM is honest, and
yet the two seed0’s evolve to the same seed∗, which contradicts the collision-resistance property
of the evolution function. Now we have ĩ = i∗. That is, ticketb is a ticket given to user i∗. As
argued before, no attacker can forge ticketb without corrupting user i∗. Hence, ticketb was the
ticket presented by user i∗ in a successful connection establishment to server j∗. This contradicts
the assumption that user i∗ had not been blacklisted before t∗.

8.3 Anonymity

We argue the anonymity of our Nymble construction in two cases. In the first, the adversary
attempts to distinguish between two users i∗0 and i∗1 of his choice behind a connection establishment,
index it as k∗, to a possibly corrupt server j∗ also of his choice, who are both illegitimate according
to server j∗ chosen by the adversary, at some point of time in some time period t∗, also of the
adversary’s choice. In the second case, the two chosen users are both legitimate according to the
server. We show that the adversary cannot succeed in either case.

35

8.3.1 Distinguishing between two illegitimate users

We argue that the two chosen illegitimate users will react indistinguishably.
Observe that all honest users execute the Nymble-connection Establishment protocol in exactly

the same manner up until the end of the Blacklist validation stage (Section 5.5.1). It suffices then
to show that every illegitimate user will evaluate safe to false, and hence terminate the protocol
with failure at the end of the Privacy check stage (Section 5.5.2).

Let us first consider an illegitimate user who has already disclosed a ticket during a connection
establishment, index it as k′, to the same server at a time prior to—but in the same period as—the
current connection establishment k∗. In both establishments, the users correctly identify server j∗

due to the authenticity of the channel. Hence, the boolean ticketDisclosed for the server has been
set to true during establishment k′ and thus safe is evaluated to false during establishment k∗.

Now, an illegitimate user who has never disclosed a ticket during the same time period must
have, by definition, one or more of her disclosed tickets successfully blacklisted by server j∗ before
t∗. Let ticket ′ be one such ticket. Hence, server j∗ executed a blacklist update protocol before t∗ in
which ticket ′ was contained in the list of tickets under complaint and NM terminated with success.
Since NM terminated with success, ticket ′ was valid. If a blacklist update with a complaint against
ticket ′ terminated with success at the NM, then server j∗ will have a signed blacklist, call it blistc,
containing the user’s nymble∗ for the time period in which the update happened.

Now, if we assume the contrary that safe is evaluated to true during the establishment k∗, then
the user’s nymble∗ is not in the given blacklist, call it blist∗. Since blist∗ is verified by the user to
be valid, server j∗ must have obtained it via a blacklist update protocol, index it as `, in which the
NM terminated with success (as otherwise the digital signature would be forgeable, or the hash in
the daisy chain could be inverted). This implies that, in update `, server j∗ has supplied a blacklist
verified to be valid by the NM for some earlier time period.

Since the user’s nymble∗ appeared on blistc, and an honest NM never deletes entries in the
blacklist during a blacklist update protocol, nymble∗ also appeared on blist∗, which contradicts the
assumption.

8.3.2 Distinguishing between two legitimate users

We show that the two chosen users will react indistinguishably. We first argue that any legitimate
user i∗ will proceed to the Ticket examination stage in the Nymble-connection establishment pro-
tocol. We then argue that the adversary can extract no information on the user’s identity from the
ticket that the user discloses.

The authenticity of the channel implies that the user always knows the correct identity of the
server she is establishing a connection to. As a result, if the user is legitimate according to sever
j∗, the boolean ticketDisclosed for the server remains false.

Now, safe is evaluated to true if UserCheckIfBlacklisted returns false. We explain why this
is. Assume the contrary that the algorithm returns true. Then the blacklist, call it blist∗, given
to the user contains the user’s nymble∗. By arguments similar to those we have used, this implies
that the user has actually had at least one of her disclosed tickets blacklisted by the server, which
contradicts the fact that the user is legitimate.

Now, let us investigate the composition of a ticket. Since each of the two MACs in the ticket is
a deterministic function output of sid , t , w , nymble, ctxt , macKeyN , macKeyNS , an adversary can
learn from the MACs no information other than those objects, among which only nymble and ctxt

36

depend on the user’s identity. Since the adversary does not know the decryption key, the CCA2
security of the encryption implies that ctxt reveals no information about its underlying plaintext
and thus the user’s identity to the adversary.

Finally, we argue why the nymble in the ticket also reveals no information about the user’s
identity to the adversary. Suppose the ticket is valid for time period t∗. Then by now it should
be straightforward to see that the adversary cannot have obtained any seed of the user at time
period t∗ or before. Under the Random Oracle model, the Simulator can correctly simulate the
hash function g from seed t∗ to nymblet∗ of the user. And hence the result.

8.4 Across multiple linkability windows

With multiple linkability windows, our Nymble construction still has Accountability and Non-
frameability because each ticket is valid for and only for a specific linkability window; it still has
Anonymity because pseudonyms are an output of a collision-resistant function that takes the link-
ability window as input.

9 Discussion

IP-address blocking By picking IP addresses as the resource for limiting the Sybil attack, our
current implementation closely mimics IP-address blocking that many servers on the Internet rely
on. There are, however, some inherent limitations to using IP addresses as the scarce resource. If
a user can obtain multiple IP addresses she can circumvent nymble-based blocking and continue
to misbehave. We point out, however, that this problem exists in the absence of anonymizing
networks as well, and the user would be able to circumvent regular IP-address based blocking by
using multiple IP addresses. Some servers alleviate this problem with subnet-based IP blocking,
and while it is possible to modify our system to support subnet-blocking, new privacy challenges
emerge; a more thorough description of subnet-blocking is left for future work.

Other resources Users of anonymizing networks such as Tor would be reluctant to use resources
that directly reveal their identity (e.g., passports or a national PKI). Email addresses could provide
more privacy, but provide weak blacklistability guarantees because users can easily create new
email addresses. Other possible resources include client puzzles [JB99] and e-cash, where users
are required to perform a certain amount of computation or pay money to acquire a credential.
Another alternative is for the PM to send an SMS message to the user’s mobile phone. These
approaches would limit the number of credentials obtained by a single individual by raising the
cost of acquiring credentials.

Server-specific linkability windows An enhancement would be to provide support to vary T
and L for different servers. As described, our system does not support varying linkability windows,
but does support varying time periods. This is because the PM is not aware of the server the user
wishes to connect to, yet it must issue pseudonyms specific to a linkability window. We do note
that the use of resources such as client puzzles or e-cash would eliminate the need for a PM, and
users could obtain Nymbles directly from the NM. In that case, server-specific linkability windows
could be used.

Side-channel attacks While our current implementation does not fully protect against side-

37

channel attacks, we have used caution to mitigate the risks. We have implemented various algo-
rithms in a way that their execution time leaks little information that cannot already be inferred
from the algorithm’s output.11 Also, since a confidential channel does not hide the size of the com-
munication, we have constructed the protocols so that each kind of protocol message is of the same
size regardless of the identity or current legitimacy of the user. Finally, we have paid attention to
some potential leakage of the user’s information such as when setting up a TLS connection, during
which cipher-suite parameters are exchanged in the clear.

10 Conclusions

We have proposed and built a comprehensive credential system called Nymble, which can be used
to add a layer of accountability to any publicly known anonymizing network. Servers can black-
list misbehaving users while maintaining their privacy, and we show how these properties can be
attained in a way that is practical, efficient, and sensitive to needs of both users and services.

We hope that our work will increase the mainstream acceptance of anonymizing networks such
as Tor, which has thus far been completely blocked by several services because of users who abuse
their anonymity.

Acknowledgments

Peter C. Johnson and Daniel Peebles helped in the early stages of prototyping. We are grateful for
the suggestions and help from Roger Dingledine and Nick Mathewson.

11We acknowledge that timing attacks may still allow the fingerprinting of users based on their response times.

38

References

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A Practical and
Provably Secure Coalition-Resistant Group Signature Scheme. In CRYPTO, LNCS
1880, pages 255–270. Springer, 2000.

[AST02] Giuseppe Ateniese, Dawn Xiaodong Song, and Gene Tsudik. Quasi-Efficient Revo-
cation in Group Signatures. In Financial Cryptography, LNCS 2357, pages 183–197.
Springer, 2002.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for Message
Authentication. In CRYPTO, LNCS 1109, pages 1–15. Springer, 1996.

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A Concrete Security
Treatment of Symmetric Encryption. In FOCS, pages 394–403, 1997.

[BR93] Mihir Bellare and Phillip Rogaway. Random Oracles Are Practical: A Paradigm for
Designing Efficient Protocols. In Proceedings of the 1st ACM conference on Computer
and communications security, pages 62–73. ACM Press, 1993.

[Bra93] Stefan Brands. Untraceable Off-line Cash in Wallets with Observers (Extended Ab-
stract). In CRYPTO, LNCS 773, pages 302–318. Springer, 1993.

[BS01] Emmanuel Bresson and Jacques Stern. Efficient Revocation in Group Signatures. In
Public Key Cryptography, LNCS 1992, pages 190–206. Springer, 2001.

[BS04] Dan Boneh and Hovav Shacham. Group Signatures with Verifier-Local Revocation. In
ACM Conference on Computer and Communications Security, pages 168–177. ACM,
2004.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of Group Signatures: The
Case of Dynamic Groups. In CT-RSA, LNCS 3376, pages 136–153. Springer, 2005.

[Cha82] David Chaum. Blind Signatures for Untraceable Payments. In CRYPTO, pages 199–
203, 1982.

[Cha90] David Chaum. Showing Credentials without Identification Transfeering Signatures
between Unconditionally Unlinkable Pseudonyms. In AUSCRYPT, LNCS 453, pages
246–264. Springer, 1990.

[CL01] Jan Camenisch and Anna Lysyanskaya. An Efficient System for Non-transferable
Anonymous Credentials with Optional Anonymity Revocation. In EUROCRYPT,
LNCS 2045, pages 93–118. Springer, 2001.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous Credentials. In CRYPTO, LNCS 2442, pages 61–
76. Springer, 2002.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature Schemes and Anonymous Creden-
tials from Bilinear Maps. In CRYPTO, LNCS 3152, pages 56–72. Springer, 2004.

39

[CvH91] David Chaum and Eugène van Heyst. Group Signatures. In EUROCRYPT, pages
257–265, 1991.

[Dam88] Ivan Damg̊ard. Payment Systems and Credential Mechanisms with Provable Security
Against Abuse by Individuals. In CRYPTO, LNCS 403, pages 328–335. Springer, 1988.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-Generation
Onion Router. In Usenix Security Symposium, pages 303–320, August 2004.

[Dou02] John R. Douceur. The Sybil Attack. In IPTPS, LNCS 2429, pages 251–260. Springer,
2002.

[EGM89] Shimon Even, Oded Goldreich, and Silvio Micali. On-Line/Off-Line Digital Schemes.
In CRYPTO, LNCS 435, pages 263–275. Springer, 1989.

[FJS07] Joan Feigenbaum, Aaron Johnson, and Paul F. Syverson. A Model of Onion Rout-
ing with Provable Anonymity. In Financial Cryptography, LNCS 4886, pages 57–71.
Springer, 2007.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput., 17(2):281–308,
1988.

[HJP05] Yih-Chun Hu, Markus Jakobsson, and Adrian Perrig. Efficient Constructions for One-
Way Hash Chains. In ACNS, volume LNCS 3531, pages 423–441, 2005.

[HS06] Jason E. Holt and Kent E. Seamons. Nym: Practical Pseudonymity for Anonymous
Networks. Internet Security Research Lab Technical Report 2006-4, Brigham Young
University, June 2006.

[JB99] Ari Juels and John G. Brainard. Client Puzzles: A Cryptographic Countermeasure
Against Connection Depletion Attacks. In NDSS. The Internet Society, 1999.

[JKTS07] Peter C. Johnson, Apu Kapadia, Patrick P. Tsang, and Sean W. Smith. Nymble:
Anonymous IP-Address Blocking. In Privacy Enhancing Technologies, LNCS 4776,
pages 113–133. Springer, 2007.

[KBC05] Tadayoshi Kohno, Andre Broido, and K. C. Claffy. Remote physical device finger-
printing. In Proceedings of the 2005 IEEE Symposium on Security and Privacy, pages
211–225, Washington, DC, USA, 2005. IEEE Computer Society.

[KTY04] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable Signatures. In EURO-
CRYPT, LNCS 3027, pages 571–589. Springer, 2004.

[LRSW99] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym Sys-
tems. In Selected Areas in Cryptography, LNCS 1758, pages 184–199. Springer, 1999.

[LSM06] B. N. Levine, C. Shields, and N. B. Margolin. A Survey of Solutions to the Sybil
Attack. Technical Report Tech report 2006-052, University of Massachusetts Amherst,
Oct 2006.

40

[Mic02] Silvio Micali. NOVOMODO: Scalable Certificate Validation and Simplified PKI Man-
agement. In 1st Annual PKI Research Workshop - Proceeding, April 2002.

[NF05] Toru Nakanishi and Nobuo Funabiki. Verifier-Local Revocation Group Signature
Schemes with Backward Unlinkability from Bilinear Maps. In ASIACRYPT, LNCS
3788, pages 533–548. Springer, 2005.

[Ngu05] Lan Nguyen. Accumulators from Bilinear Pairings and Applications. In CT-RSA,
LNCS 3376, pages 275–292. Springer, 2005.

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for Web Transactions.
ACM Transactions on Information and System Security, 1(1):66–92, November 1998.

[TAKS07] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. Blacklistable
Anonymous Credentials: Blocking Misbehaving Users Without TTPs. In CCS ’07:
Proceedings of the 14th ACM conference on Computer and communications security,
pages 72–81, New York, NY, USA, 2007. ACM.

[TAKS08] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. PEREA: Towards
Practical TTP-Free Revocation in Anonymous Authentication. In ACM Conference
on Computer and Communications Security, pages 333–344. ACM, 2008.

[TFS04] Isamu Teranishi, Jun Furukawa, and Kazue Sako. k-Times Anonymous Authentication
(Extended Abstract). In ASIACRYPT, LNCS 3329, pages 308–322. Springer, 2004.

[TKS06] Patrick P. Tsang, Apu Kapadia, and Sean W. Smith. Anonymous IP-Address Blocking
in Tor with Trusted Computing (Work-in-progress). In The Second Workshop on
Advances in Trusted Computing (WATC ’06 Fall), November 2006.

[TX03] Gene Tsudik and Shouhuai Xu. Accumulating Composites and Improved Group Sign-
ing. In ASIACRYPT, LNCS 2894, pages 269–286. Springer, 2003.

[vABHO06] Luis von Ahn, Andrew Bortz, Nicholas J. Hopper, and Kevin O’Neill. Selectively
Traceable Anonymity. In Privacy Enhancing Technologies, LNCS 4258, pages 208–
222. Springer, 2006.

41

	Introduction
	Our solution
	Contributions of this paper

	An Overview to Nymble
	Resource-based blocking
	The Pseudonym Manager
	The Nymble Manager
	Time
	Blacklisting a user
	Notifying the user of blacklist status

	Security Model
	Goals and threats
	Trust assumptions

	Preliminaries
	Notation
	Cryptographic primitives
	Data structures
	Communication channels

	Our Nymble Construction
	System setup
	Server registration
	User registration
	Credential acquisition
	Nymble-connection establishment
	Service provision and access logging
	Auditing and filing for complaints
	Blacklist update
	Periodic update

	Evaluation
	Security
	Performance

	Security Formalism
	Oracles
	Game-Accountability
	Game-Non-Frameability
	Game-Anonymity

	Security Analysis
	Accountability
	Non-Frameability
	Anonymity
	Across multiple linkability windows

	Discussion
	Conclusions

