
PPAA: Peer-to-Peer Anonymous Authentication

(Extended Version)∗†

Patrick P. Tsang‡ and Sean W. Smith§

Department of Computer Science
Dartmouth College
Hanover, NH 03755

USA

Dartmouth Computer Science Technical Report
TR2008-615

April 8, 2008

Abstract

In the pursuit of authentication schemes that balance user privacy and accountability, nu-
merous anonymous credential systems have been constructed. However, existing systems assume
a client-server architecture in which only the clients, but not the servers, care about their pri-
vacy. In peer-to-peer (P2P) systems where both clients and servers are peer users with privacy
concerns, no existing system correctly strikes that balance between privacy and accountability.

In this paper, we provide this missing piece: a credential system in which peers are pseudony-
mous to one another (that is, two who interact more than once can recognize each other via
pseudonyms) but are otherwise anonymous and unlinkable across different peers. Such a creden-
tial system finds applications in, e.g., Vehicular Ad-hoc Networks (VANets) and P2P networks.

We formalize the security requirements of our proposed credential system, provide a construc-
tion for it, and prove the security of our construction. Our solution is efficient: its complexities
are independent of the number of users in the system.

Keywords: privacy, anonymous authentication, credentials, secret handshakes, VANets, rep-
utation systems

∗This work was supported in part by the National Science Foundation under grant CNS-0524695. The views and
conclusions do not necessarily represent those of the sponsors.
†This technical report is the extended version of the paper to appear in ACNS ’08 under the same title [TS08].
‡patrick@cs.dartmouth.edu
§sws@cs.dartmouth.edu

Contents

1 Introduction 4
1.1 Balancing User Privacy and Accountability . 4
1.2 The Challenge: P2P Systems . 4
1.3 Our Contributions . 5

2 Related Works 6

3 Our Approach 7
3.1 Putting Authentication Schemes into “Linkability Context” 7
3.2 Key Ideas in Our PPAA Design . 8

4 Preliminaries 8

5 Model 9
5.1 System Operations . 10
5.2 Security Requirements . 11

6 Our Solution 12
6.1 Our First Attempt . 12
6.2 Our PPAA Construction . 13
6.3 SPK Instantiation . 16
6.4 Analysis . 16

7 Discussion 17

8 Conclusion 18

A Formal Security Definitions 23
A.1 Mis-authentication Resistance and Peer Accountability 23
A.2 Peer Privacy . 24
A.3 Framing Resistance . 25

B Implementation 25
B.1 Software Prototyping . 25
B.2 Empirical Performance Results . 25

C SPK Instantiation 26
C.1 SPK0 . 26
C.2 SPK1 . 26
C.3 SPK2 . 28
C.4 SPK3 . 28
C.5 SPK4 . 29
C.6 Computational Costs . 30

2

D Proof Sketches 30
D.1 Peer Accountability . 30
D.2 Peer Privacy . 31
D.3 Framing Resistance . 32

3

1 Introduction

We live in an era where human activities happen electronically more than ever. People rely heavily
on computer infrastructures, such as Web applications and peer-to-peer (P2P) networks, to share
information, express opinions and trade goods. It is therefore paramount to protect the privacy
of the users in these infrastructures by providing them with the option of acting anonymously,
unlinkably and/or unobservably.

1.1 Balancing User Privacy and Accountability

It is impractical to pursue user privacy without taking accountability into consideration. Without
the fear of being identified, held responsible and punished when they abuse the services, clients are
likely to misbehave due to selfishness or malice, thereby disrupting system operations and harming
everyone else. Accountability has traditionally been achieved through authentication mechanisms
(often followed by access control and/or auditing), which verify the identity of a client who requests
a service. In the classic examples of passwords, Kerberos and standard Public Key Infrastructures
(PKIs), clients have to give up their privacy to be authenticated.

Anonymous Credential Systems In the pursuit of authentication schemes that balance privacy
and accountability, numerous anonymous credential systems [CL01, CL02b], and closely related
schemes such as k-times anonymous authentication (k-TAA) [TFS04, TS06], offline anonymous
electronic cash (e-cash) systems [Cha82, CHL05] and group signatures [CvH91, ACJT00] have
been constructed. An anonymous credential system allows a client to be authenticated by a server
as a group member anonymously and unlinkably, and yet the anonymity can be revoked when
certain conditions are met. Existing systems differ in their anonymity revocation mechanisms, and
hence provide different balancing points between privacy and accountability for different application
settings. For example, clients can be identified when they “double-spend” in an e-cash system;
their authentications become linkable1 when they are authenticated more than k times in k-TAA.
In group signatures, an authority exists and is capable of arbitrarily revoking anonymity.

1.2 The Challenge: P2P Systems

All anonymous credential systems in existence today assume a client-server architecture in which
only the clients, but not the servers, care about their privacy. However, in P2P systems where both
clients and servers are peer users with privacy concerns, none of the existing credential systems
correctly strike that balance between privacy and accountability.

More specifically, several existing anonymous credential systems provide client accountability
by empowering servers to pseudonymize clients who are otherwise anonymous, and servers can
thus decide whether and/or how to serve an anonymous client depending the past behavior of the
client. In all such systems, however, a client must either (1) present to all servers the very same
and hence linkable pseudonym, or (2) learn the identity or at least the pseudonym of a server and
then present to that server a pseudonym specific to it. In the former case, client privacy is at risk
because colluding servers can link connections from the same client; in the latter, server privacy is
at risk because colluding clients can link connections to the same server.

1Two authentication runs are linkable (by some entity) if and only if it is possible (for that entity) to tell whether
or not the two runs are executed by the same client.

4

We provide below two application scenarios to motivate the user’s need for privacy not just as
a client, but also as a server, in P2P systems. The opposing requirements of server privacy, client
privacy, server accountability and client accountability in these scenarios illustrate the non-triviality
of the challenge we overcome in this paper.

Vehicular Ad-Hoc Networks (VANets) To contribute to safer and more efficient roads, ve-
hicles in VANets constantly exchange information such as road and weather conditions among each
other and with roadside base stations. Research has shown that the provision of the necessary
security and privacy in VANets is critical to the users who rely on these networks [RH07, CPHL07].

To protect the location privacy of the drivers when information is exchanged on the road between
two vehicles, both vehicles should remain anonymous among all the vehicles in communication
range. Furthermore, no one should be able to link reports by the same vehicle to different other
vehicles or roadside base stations. This helps prevent a vehicle from being not only pseudonymized
and thus tracked, but also deanonymized through drawing inferences from multiple reports made
by the vehicle [Kru07].

From the accountability perspective, to distinguish legitimate data from rogue data, vehicles
must be authenticated when reporting sensor readings. Moreover, so that repetitive reporting of
the same information can be detected, vehicles should be pseudonymous to one another (that is,
vehicle X can recognize some vehicle Y reporting again, without knowing anything else about Y).
For instance, in VANets in which vehicles decide when to accelerate and break based on reports
collected from the network, the failure to achieve these security goals can allow an attacker to
paralyze traffic and/or induce accidents.

Reputation Systems for P2P Networks The existence of selfish users in P2P networks such as
those for file sharing severely degrades system performance. Adversaries can reduce the availability
of specific items in P2P networks by “poisoning” [CWC05] them, i.e., injecting lots of decoys into the
network. Reputation systems provide a game-theoretic solution to these problems by introducing
incentives for users to behave well. Unfortunately, reputation systems lacking privacy can also
introduce disincentives to good behavior: if a reputation system reveals the pseudonym or even the
identity of the serving peers, peers might refuse to serve others so as to stay anonymous.

A privacy-preserving reputation system for P2P networks where there is no (trusted) central
server should have the following properties: users are pseudonymous to one another, so that a
user Carol can decide whether to serve (or be served by) another user Dave based on her past
experience with Dave, without knowing his actual identity. However, assuming the registration
procedures make sure that users in the system can have at most one single membership, Dave
shouldn’t be able to start fresh after having established a bad reputation with respect to Carol,
nor can he impersonate Carol for her high reputation, potentially even spoiling her reputation
through misbehavior. Finally, connections between a peer Carol and different other peers should
be unlinkable, as otherwise it might be possible for someone to trace Carol by studying those
connections.

1.3 Our Contributions

In this paper, we overcome the challenge posed above by proposing the concept—and giving a
construction and implementation—of Peer-to-Peer Anonymous Authentication, or PPAA for short,

5

a credential system in which peers are pseudonymous to individual peers but unlinkable across
different peers. More specifically, we make the following contributions:

• We rigorously define the operations of PPAA and its security and privacy requirements, during
which we introduce the notion of the Linkability Context of an authentication scheme as a
tool for a more precise reasoning about the linkability property of an authentication scheme.
We also formalize the threat model in which those security requirements must be satisfied.

• We provide the first construction for PPAA. Our construction is both secure and efficient. In
particular, its complexities are independent of the number of users in the system. We also
report empirical performance figures of a software implementation of our construction.

Paper Organization We review the related works in Section 2 and give an overview of our
solution in Section 3. Section 4 covers the preliminary materials. In Section 5, we define the
security model. We present our solution and analyze its security and efficiency in Section 6. We
provide some discussions in Section 7 and conclude the paper in Section 8.

2 Related Works

We review the literature for related works, and argue why they fail to solve the problem posed
in this paper. We make occasional but otherwise minimal use of mathematical notation without
definition for the sake of conciseness.

k-Times Anonymous Authentication k-TAA [TFS04, NSN05, TS06, CHK+06] and related
schemes such as event-oriented linkable group/ring signatures [TWC+04, ASY06] are close candi-
dates in overcoming the posed challenge. In essence, when a client Alice in these schemes is being
authenticated by a server Bob, she provides Bob with a tag and convinces him that the tag is
correctly formed. Bob can test if two authentications are linked to the same client by examining
the associated tags.

These schemes do not solve the posed problem since authentication runs by the same user
to different servers are linkable. This is because a user always uses the same tag when being
authenticated by any server. More specifically, the tag of client i with secret xi has the form of
ti = gxi for some global parameter g.

We point out that, while they do not address server privacy, various k-TAA schemes and anony-
mous credential systems do provide several major ingredients for the solution we propose in this
paper. For example, our proof system for group membership uses ideas from Camenisch and
Lysyanskaya [CL02b] and Boneh et al. [BBS04]. Also, the concept of event identifiers in this paper
stems from several other existing schemes [CL01, TFS04, TWC+04].

Secret Handshakes Secret handshake schemes (SHSs) [BDS+03, CJT04, XY04, ABK07] allow
any two members of the same group to authenticate each other as a group member and share a
session key without revealing their group affiliations to outsiders.

In the scheme due to Xu and Yung [XY04], secret handshakes are anonymous and unlinkable,
but members are limited to shaking hands no more than some predefined number of times. The

6

state-of-the-art construction [ABK07] provides anonymity and unlinkability without such a limita-
tion. Recently, Tsudik and Xu [TX06] extended secret handshakes into a multi-party and privacy-
conserving setting: two or more group members can anonymously and unlinkably authenticate
each other such that one’s group affiliation is not revealed unless every other party’s membership
is ensured.

All anonymous secret handshakes proposed so far [XY04, ABK07, TX06] fail to solve the posed
problem. As handshakes are unlinkable, a client Alice has no way to tell if the one she is shaking
hands with is the same as the one behind some earlier handshakes. As a remedy, Alice may ask
the person behind the handshake to reveal a secret, e.g., a random nonce, that she leaked in their
last handshake. Unfortunately, this is problematic because the person does not know which secret
to reveal as Alice is anonymous. Also, one could pretend to be new by “forgetting” the secrets.

3 Our Approach

In this section, we provide an overview of our approach to solve the posed challenge.

3.1 Putting Authentication Schemes into “Linkability Context”

We first introduce the notion of the linkability context in authentication.

Definition 1 (Linkability Context) The Linkability Context, or LC for short, of an authentica-
tion scheme is a collection of attributes that determines the linkability of authentication runs in the
scheme. In particular, two authentication runs are linkable if and only if the two runs are executed
when the attributes in the linkability context are all in the same condition. ut
In k-TAA, for instance, authentication runs by the same client at the same “time” are linkable,
while runs by the same client at different times, as well as those by different clients at the same
time, are not linkable. The linkability context of k-TAA is thus LC = {client-ID, time}, i.e., the
collection of client identity and time.

Understanding the precise linkability context of an authentication scheme helps reason about
the privacy guarantees and hence implications of the scheme. At one end of the spectrum of
client privacy, in conventional authentication schemes such as those using digital signatures, any
two authentication runs are linkable. The linkability context of these schemes therefore consists
of nothing, i.e., LC = ∅. At the other end of the spectrum, there are schemes such as ring
authentication [RST01, DKNS04] in which no two authentication runs are linkable. In this case,
the linkability context is the authentication run instance, i.e., LC = {authen-run-ID}.

Linkability Context in PPAA A correct choice of its linkability context is the first step towards
a secure PPAA construction. In our design, the linkability context in PPAA is the collection of the
unordered pair of client and server identity, and the event for which the PPAA authentication is
executed, i.e.,

LC = {{client-ID, server-ID}, event-ID}.
In other words, we would like to design PPAA in such a way that authentication runs are linkable
if and only if they are executed between the same pair of peers for the same event. In the example
of VANets, if one sets the event to be “speed on Highway I-89 on June 3rd, 2008,” then only those
PPAA-authenticated speed report made by the same vehicle to the same road-side base station on
Highway I-89 on June 3rd, 2008 are linkable.

7

3.2 Key Ideas in Our PPAA Design

An Observation It should have become clear now that event-oriented linkable group/ring signa-
tures and k-TAA fail as a secure PPAA construction because server identity is not in their linkability
context. It would seem that one could bring server identity into the linkability context in an event-
oriented linkable group/ring signature (resp. k-TAA) by mapping an event in (resp. one “time”)
into the identity of a server. Consequently, LC becomes {client-ID, server-ID} and authenti-
cation runs by the same user to different servers become unlinkable. More specifically, the tag of
client i with secret xi with respect to server j has the form of ti,j = gxij , where gj is a server-specific
parameter. Tags of the same client with respect to different servers are now unlinkable thanks to
the underlying intractability assumption (the Decisional Diffie-Hellman assumption).

Unfortunately, to produce a tag and prove its correctness during an authentication run in the
above modified scheme, a client must now ask the server for its gj , which can be considered its
pseudonym. Even if there existed a way in which a client could compute a tag for the server without
knowing the pseudonym of the server, two colluding users can easily determine if they are being
authenticated by the same server. In other words, using the tag design in event-oriented linkable
group/ring signatures and k-TAA, it is impossible to devise a secure authentication scheme with
LC = {client-ID, server-ID}.

The Need of a Novel Tag Construct As a result, constructing a secure PPAA requires a new
tag design that possesses novel features:

• Tags must be dependent on the identity of the client, the server, and the event.

• Tags are linked if and only if they are produced by the same (unordered) pair of peers, and
during the same event.

• Peers must be able to produce tags and prove their correctness in zero-knowledge through
interacting with the other peers and without knowing the identity of the other peers.

In Section 6, we present such a tag design and how we use it to construct a secure PPAA.

4 Preliminaries

We provide the technical background necessary for understanding the rest of this paper.

Notations A function f(λ) is negligible if for all polynomial p(λ), f(λ) < 1/p(λ) holds for all
sufficiently large λ. A function is non-negligible if it is not negligible. The probability Pr[E] of an
event E is overwhelming (in some parameter λ) if 1− Pr[E] is negligible (in λ).

Let λ be a sufficiently large security parameter. Let G1 and G2 be cyclic groups of prime order
p with |p| = λ such that group operation is efficiently computable. Let g0 and h0 be generators of
G1 and G2 respectively such that there is an efficiently computable isomorphism ψ from G2 to G1

with ψ(h0) = g0.
We say that (G1,G2) is a bilinear group pair if there exists an efficiently computable map

ê : G1×G2 → GT , where GT is also a cyclic group of prime order p, such that: ê(Ax, By) = ê(A,B)xy

for all A ∈ G1, B ∈ G2 and x, y ∈ Zp, and ê(g0, h0) 6= 1.

8

Complexity Assumptions The security of our solution to be presented later in this paper relies
on the validity of the DDH assumption in G1 and the q-SDH assumption on bilinear group pair
(G1,G2), which we define as the following.

• The Decisional Diffie-Hellman (DDH) problem in G1: On input of a quadruple (g0, g
a
0 , g

b
0, g

c
0) ∈

G4
1, where a, b ∈R Zp, and c = ab or c ∈R Zq equally likely, output 1 if c = ab and 0 otherwise.

We say that the DDH assumption in G1 holds if no probabilistic polynomial time (PPT)
algorithm has non-negligible advantage over random guessing in solving the DDH problem in
G1.

• The q-Strong Diffie-Hellman (q-SDH) problem in (G1,G2): On input of a (q + 2)-tuple (g0,
h0, hx0 , hx

2

0 , · · · , hxq0) ∈ G1 ×Gq+1
2 , where x ∈R Zp, output a pair (A, c) ∈ G1 × Zp such that

A(x+c) = g0. We say that the q-SDH assumption in (G1,G2) holds if no PPT algorithm has
non-negligible advantage in solving the q-SDH problem in (G1,G2).

The q-SDH assumption was introduced and proven to hold in generic groups [Sho97] by Boneh
and Boyen [BB04]. The DDH assumption in G1 is the also known as the eXternal Diffie-Hellman
(XDH) assumption in (G1,G2) [CHL05, BBS04]. The validity of the XDH assumption implies that
ψ is computationally one-way. The assumption is known is be false on supersingular curves [GR04],
but is conjectured to hold for the Weil or Tate pairing on MNT curves with embedded degree greater
than 1 and G1 defined over the ground field [BBS04].

Proofs of Knowledge In a Zero-Knowledge Proof-of-Knowledge (ZKPoK) protocol [GMR89], a
prover convinces a verifier that some statement is true without the verifier learning anything except
the validity of the statement. Σ-protocols are a special type of three-move ZKPoK protocols. They
can be converted into non-interactive Signature Proof of Knowledge (SPK) schemes that are secure
in the Random Oracle (RO) Model [BR93] (in the sense of Indistinguishability against chosen-
message attacks, or IND-CMA [GMR88]).

In many anonymous credential systems, a client uses an SPK scheme to prove in zero-knowledge
to a server her possession of a credential issued by the Group Manager when being authenticated
by a server. The SPK schemes differ in these systems, which accounts for the differences in privacy
and accountability guarantees and complexity assumptions. The SPK schemes we will use in our
solution are based on the ZKPoK protocol due to Boneh and Boyen [BBS04].

We follow the notation introduced by Camenisch and Stadler [CS97] for the various ZKPoK
protocols. For example, PK {(x) : y = gx} denotes a ZKPoK protocol that proves the knowledge
of an integer x such that y = gx holds, where y and g are elements of some group G = 〈g〉. Using
this notation, a ZKPoK protocol can be described by just pointing out its aim while hiding all
the details. Moreover, we denote by SPK {(x) : y = gx} (M) the SPK scheme converted from the
above ZKPoK protocol.

5 Model

This section formalizes PPAA. The entities involved in PPAA are the Group Manager (GM) and
a set of peer users, or simply peers. The GM is responsible for registering peers. A peer can be
a client, a server, or both. Clients are interested in accessing services provided by servers and
servers are willing to serve the clients, as long as their privacy and accountability requirements are
satisfied.

9

5.1 System Operations

Operations that take place in PPAA include the GM setting up the system (Setup) and registering
peers into the system (Registration), and peers authenticating one another (Authentication) and
testing if two authentication runs are linked (Linking). We highlight that only Setup and Registration
involve a centralized authority, namely the GM; Authentication requires no centralized authority,
which is a crucial property necessary for PPAA to be applicable to P2P systems with scalability.

The syntax for these operations are given as follows.

• Setup is a Probabilistic Poly-Time (PPT) algorithm invoked by the GM. On input a sufficiently
large security parameter λ, the algorithm outputs GM’s secret key gsk and the group public
key gpk. The GM stores gsk privately and publishes gpk to the public. gpk is an implicit
input to all the algorithms below.

• Registration is a two-party multi-round protocol between the RegisterP PPT algorithm invoked
by a peer and the RegisterGM PPT algorithm invoked by the GM. The additional input to
RegisterGM is the GM’s secret key gsk. Upon successful termination of a protocol run,
RegisterP outputs a credential, which the peer stores privately, and by doing so becomes a
registered peer in the system.

• Authentication is a two-party multi-round protocol between the AuthenticateI PPT algorithm
invoked by a registered peer Alice (as the Initiator, i.e. the one who initiates the protocol) and
the AuthenticateR PPT algorithm invoked by another registered peer Bob (as the Responder).
The common input to both parties is an event identifier eid upon which they have already
agreed.2 The additional inputs to AuthenticateI and AuthenticateR are Alice’s credential and
Bob’s credential, respectively.

A protocol run terminates successfully if and only if both algorithms output a tag, in
which case we say that the authentication is successful and that Alice and Bob are mutually
authenticated with one another, during an event with identifier eid. When we say that a
peer Carol is involved in an authentication without specifying her role, then Carol can be
either the initiator or the responder in that authentication.

• Linking is a (possibly probabilistic) poly-time algorithm any peer can invoke. On input two
tags tag1 and tag2, the algorithm outputs a boolean value of either linked or not-linked.

In the former (resp. the latter) case, the two tags, and also the two successful authentication
runs from which the tags are resulted, are said to be linked (resp. not linked).

Semantically, a peer Carol uses this algorithm to pseudonymize other peers with which she
has mutually authenticated: for any two successful authentication runs during the same
event, she thinks she is mutually authenticating with the same peer if and only if the two
authentication runs are linked.

Any construction of PPAA must be correct:

Definition 2 (Correctness) An PPAA construction is correct if it has authentication correctness
and linking correctness:

2In the VANet example given in Section 3.2, the eid can be 20080603||I-89||speed.

10

• Authentication Correctness. If all entities in PPAA are honest (i.e. they all follow the sys-
tem’s specification), then, with overwhelming probability, any authentication between any
two registered peers is successful.

• Linking Correctness. If all entities in PPAA are honest, then, with overwhelming probability,
in any two successful authentication involving any registered peer Carol, the two tags output
by Carol are linked if and only if, in those two authentications, both the event identifiers and
the other peers involved are identical. ut

5.2 Security Requirements

Roughly speaking, a PPAA construction is secure if it satisfies the following security requirements.
A formal definition can be found in Appendix A.

Mis-authentication Resistance Mis-authentication occurs when two peers successfully com-
plete mutual authentication, but only one of them is an honest and registered peer. A secure
PPAA construction must be resistant to mis-authentication.

For example, this property prevents vehicles in VANets from believing (malicious) data from
rogue sensors.

Peer Accountability To subvert peer accountability, a coalition of n ≥ 1 registered but malicious
peer(s) attempts to run more than n successful mutual authentication involving the same hon-
est peer Carol during the same event such that the tags Carol outputs in those authentication
are all pairwise unlinked. A secure PPAA construction requires that no adversary can succeed
in such an attempt.

In the example of P2P networks, this prevents a peer from starting fresh after having estab-
lished a bad reputation with respect to another peer.3

Peer Privacy To subvert the privacy of an honest peer Carol involved in an authentication poten-
tially executed with a malicious peer, the adversary, potentially with the GM’s help, attempts
to:

• deanonymize Carol in individual protocol runs, and/or

• pseudonymize Carol in protocol runs with different peers and/or during different events.

A secure PPAA construction requires that no adversary can succeed in any of the above
attempts.

As an example, this ensures that communications of a vehicle in VANets with different other
vehicles or roadside base stations cannot be linked.

Framing Resistance An honest peer Carol is framed when another honest peer Dave thinks that
he is mutually authenticating with the same peer in two successful authentication runs, even
though Carol is involved in exactly one of them. A secure PPAA construction requires that
no adversary, even with the help of the GM, can frame an honest peer.

In the example of P2P reputation systems, this makes sure that peers can’t impersonate other
peers with high reputation.

3This assumes that a peer can’t register more than once. We will discuss this issue further in Section 7.

11

6 Our Solution

We begin this section with a presentation of our first attempt to construct PPAA, which, although
insecure by itself, illustrates our tag design as the core component of our full and secure PPAA
construction. Then we proceed to present our actual PPAA construction. In Appendix B, we
discuss our implementation of the construction and its empirical performance evaluation.

6.1 Our First Attempt

We call our first attempt Basic-PPAA.

Parameters Let G1 be a group as described in Section 4 in which the DDH assumption holds.
Let H : {0, 1}∗ → G1 be a secure cryptographic hash function. Event identifiers are strings of any
length.

Credentials Each user is given by the GM one credential cred in the form cred = (A, x, y) ∈
G1 × Z2

p, where x, y ∈R Zp and A is distinct in all credentials.

Tags In Basic-PPAA, a tag is the output of a function f that takes as inputs the credential of an
initiating peer cred1 = (A1, x1, y1), the credential of a responding peer cred2 = (A2, x2, y2) and
an event identifier eid. The function is defined as follows:

f : (cred1, cred2, eid) 7→ tag
.= {τ1, τ2}, where

{
τ1 = Ax2

1 H(eid)y1 ,
τ2 = Ax1

2 H(eid)y2 .

Thus, a tag is a set of two G1 elements.

The Skeleton Protocol The following steps describe a protocol run between an initiating peer
Alice with credential cred1 = (A1, x1, y1) and a responding peer Bob with credential cred2 =
(A2, x2, y2) during an event with identifier eid. When the protocol terminates, Alice and Bob
output a tag.

1. Alice → Bob: 〈U1, V1〉 = 〈Ar11 , H(eid)r1〉, where r1 ∈R Zp.

2. Bob → Alice: 〈U2, V2,W2〉 = 〈Ar22 , H(eid)r2 , Ux2
1 V y2

1 〉, where r2 ∈R Zp.

3. Alice → Bob: 〈W1, τ1〉 = 〈Ux1
2 V y1

2 ,W
1/r1
2 〉.

4. Bob → Alice: 〈τ2〉 = 〈W 1/r2
1 〉.

5. Alice and Bob both output tag = {τ1, τ2} = f(cred1, cred2, eid) and terminate.

Properties The tags and the skeleton protocol given above have the following desirable proper-
ties:

1. Two tags tag = f(cred1, cred2, eid) and tag′ = f(cred′1, cred
′
2, eid

′) are the same if and
only if {cred1, cred2} = {cred′1, cred′2} and eid = eid′, with overwhelming probability.

12

2. The protocol view of Alice 〈cred1, eid, r1, U2, V2,W2, τ2〉 can be simulated (computationally
indistinguishably) by Alice if she is given tag. In other words, Alice learns no knowledge
other than tag from running the skeleton protocol. Similarly, Bob learns no knowledge other
than tag from running the skeleton protocol.

3. The tag produced by a peer Alice for another peer Bob during an event is indistinguishable
from the tag produced by any peer for Bob during a different event; it is also indistinguishable
from the tag produced by Alice for a different peer during the same event.

The validity of these properties are straightforward provided that the DDH assumption in G1

holds. We thus omit the proof.

Remark If not all entities are honest, Basic-PPAA results in an insecure PPAA construction. For
instance, users can be authenticated without asking the GM for a credential, dishonest users may
use an arbitrary credential instead of the one given by the GM to get away from being linked and
a malicious GM can frame clients.

6.2 Our PPAA Construction

We now enumerate our PPAA construction. It can be thought of as the result of securing Basic-
PPAA by adding to it all necessary mechanisms to force the entities to behave honestly, such as by
accompanying each step in the skeleton protocol with a SPK scheme that proves the correctness of
the step.

Parameters In addition to those in Basic-PPAA, our PPAA construction has the following pa-
rameters. Let G2 be a group as described in Section 4 such that (G1,G2) is a bilinear group pair in
which the q-SDH assumption holds. Let ` be a sufficiently large security parameter of size polyno-
mial in λ. Let g1, . . . , g5 ∈ G1 be generators of G1 such that the relative discrete logarithms among
g1, . . . , g5 and g0 (from Section 4) are unknown. Let Ĥ : {0, 1}∗ → Zp be a secure cryptographic
hash function. Ĥ is utilized by the various SPKs in the construction.

Setup The GM randomly chooses γ ∈R Zp and computes w = hγ0 ∈ G2. The group secret key is
gsk = (γ) and the group public key is gpk = (w).

Registration At the successful termination of a run of this protocol between a user Alice and
the GM, Alice obtains a credential cred in the form of cred = (A, e, x, y, z) ∈ G1 × Z4

p such that
Ae+γ = g0g

x
1g

y
2g
z
3 . The private input to the GM is his group secret key gsk. The protocol proceeds

as follows.

1. The GM sends 〈N0〉 to Alice, where N0 ∈R {0, 1}` is a random challenge.

2. Alice sends 〈C,Π0〉 to the GM, where C = gx1g
y
2g
z′
3 ∈ G1 is a commitment of (x, y, z′) ∈R Z3

p

and Π0 is a signature proof of knowledge of

SPK
{

(x, y, z′) : C = gx1g
y
2g
z′
3

}
(M)

on message M = N0||C, which proves the correctness of C. We will refer to the above SPK
as SPK0.

13

Bob (the Responding Peer)Alice (the Initiating Peer)

N1 ∈R {0, 1}!, r1 ∈R Zp

U1 = Ar1
1 , V1 = H(eid)r1

m1 = eid||N1||U1||V1

Π1 = SPK1.Sign(m1)
N1, U1, V1,Π1

N2 ∈R {0, 1}!, r2 ∈R Zp

m2 = m1||Π1||N2||U2||V2||W2

N2, U2, V2,W2,Π2

Π2 valid?

Π1 valid?

Π3 valid?

Π4 valid?

W1 = Ux1
2 V y1

2 , τ1 = W 1/r1
2

m3 = m2||Π2||W1||τ1

Π3 = SPK3.Sign(m3)
W1, τ1,Π3

τ2 = W 1/r2
1

m4 = m3||Π3||τ2

Π4 = SPK4.Sign(m4)

(A1, e1, x1, y1, z1), eid (A2, e2, x2, y2, z2), eid

τ2,Π4

tag1 = {τ1, τ2} tag2 = {τ1, τ2}

Π2 = SPK2.Sign(m2)

U2 = Ar2
2 , V2 = H(eid)r2 ,W2 = Ux2

1 V y2
1

Figure 1: The Authentication Protocol

3. The GM terminates with failure if the verification of Π0 returns invalid. Otherwise the
GM sends 〈A, e, z′′〉 to Alice, where e, z′′ ∈R Zp and

A = (g0Cg
z′′
3)

1
e+γ ∈ G1

4. Alice computes z = z′ + z′′. She terminates with failure if ê(A,whe0) 6= ê(g0g
x
1g

y
2g
z
3 , h0).

Otherwise she outputs cred = (A, e, x, y, z) as her credential.

We remark that the security of the system requires that no two instances of the Registration
protocol may run concurrently. To enforce this rule, the GM registers users one after the other.

Authentication Alice (as the initiator) and Bob (as the responder) would like to mutually au-
thenticate with each other during an event with identifier eid ∈ {0, 1}∗. The common input to both
Alice and Bob is eid. The private input to Alice and Bob is their own credentials (A1, e1, x1, y1, z1)
and (A2, e2, x2, y2, z2) respectively. The following describes the steps in the 4-round protocol for
authentication.

1. Alice sends 〈N1, U1, V1,Π1〉 to Bob, where:

14

• N1 ∈R {0, 1}`, r1 ∈R Zp,
• U1 = Ar11 ∈ G1, V1 = H(eid)r1 ∈ G1, and
• Π1 is a signature proof of knowledge of

SPK

{
(A, e, x, y, z, r) :

Ae+γ = g0g
x
1g

y
2g
z
3 ∧

U1 = Ar ∧ V1 = H(eid)r

}
(M)

on message M = m1 = eid||N1||U1||V1 ∈ {0, 1}∗, which Alice can produce using her
knowledge of (A1, e1, x1, y1, z1, r1). We will refer to the above SPK as SPK1.

2. Bob terminates with failure if verification of Π1 returns invalid. Otherwise he sends
〈N2, U2, V2,W2,Π2〉 to Alice, where:

• N2 ∈R {0, 1}`, r2 ∈R Zp,
• U2 = Ar22 ∈ G1, V2 = H(eid)r2 ∈ G1, W2 = Ux2

1 V y2
1 , and

• Π2 is a signature proof of knowledge of

SPK

(A, e, x, y, z, r) :
Ae+γ = g0g

x
1g

y
2g
z
3 ∧

V2 = H(eid)r ∧ U2 = Ar ∧
W2 = Ux1 V

y
1

 (M)

on message M = m2 = m1||Π1||N2||U2||V2||W2 ∈ {0, 1}∗, which Bob can produce using
his knowledge of (A2, e2, x2, y2, z2, r2). We will refer to the above SPK as SPK2.

3. Alice terminates with failure if verification of Π2 returns invalid. Otherwise she sends
〈W1, τ1,Π3〉 to Bob, where:

• W1 = Ux1
2 V y1

2 ∈ G1, τ1 = W
1/r1
2 ∈ G1, and

• Π3 is a signature proof of knowledge of

SPK

(A, e, x, y, z, r) :
Ae+γ = g0g

x
1g

y
2g
z
3 ∧

U1 = Ar ∧ V1 = H(eid)r ∧
W1 = Ux2 V

y
2 ∧ W2 = τ r1

 (M)

on message M = m3 = m2||Π2||W1||τ1 ∈ {0, 1}∗, which Alice can produce using her
knowledge of (A1, e1, x1, y1, z1, r1). We will refer to the above SPK as SPK3.

4. Bob terminates with failure if verification of ΠA returns invalid. Otherwise he sends
〈τ2,Π4〉 to Alice, where:

• τ2 = W
1/r2
1 , and

• Π4 is a signature proof of knowledge of

SPK {(r) : W1 = τ r2 ∧ V2 = H(eid)r} (M)

on message M = m4 = m3||Π3||τ2 ∈ {0, 1}∗, which Bob can produce using his knowledge
of (r2). We will refer to the above SPK as SPK4.

Bob outputs tag2 = {τ1, τ2} and terminates.

5. Alice terminates with failure if verification of Π4 returns invalid. Otherwise she outputs
tag1 = {τ1, τ2} and terminates.

Figure 1 is a diagrammatic representation of the protocol.

15

Number of Operations (without precomputation)
G1 multi-EXPs GT multi-EXPs Pairings

Alice (the Initiator) 12 (28) 4 (10) 2 (4)
Bob (the Responder) 16 (26) 8 (11) 4 (5)

Table 1: Timing complexity of the Authentication protocol

Linking On input two tags tag1, tag2, this algorithm returns linked if they are equal and
not-linked otherwise.

6.3 SPK Instantiation

The instantiation of SPK0 to SPK4 and their computational costs in terms of the number of
pairing computation and multi-exponentiations (multi-EXPs)4 can be found in Appendix C.

6.4 Analysis

Our PPAA construction has correctness, which is a straightforward consequence of the correctness
of the skeleton protocol and the correctness of the various SPK schemes. We omit the proof for
conciseness.

Security The security of our construction hinges on the correctness of the skeleton protocol and
the security properties of the various SPK schemes surrounding it. We now state the following
theorem. Its proof is sketched in Appendix D.

Theorem 1 (Security) Our proposed PPAA construction is secure in the random oracle model if
the XDH assumption and the q-SDH assumption hold in (G1,G2). ut

Complexities Our solution scales extremely well: all operations have constant computational
and communication complexities, regardless on the number of peers, events and authentication
runs. Registration is a one-time process per user in the system. Linking involves only an equality
testing of two sets of two G1 elements.

Authentication is the dominating operation, thus we provide a more detailed analysis on its
costs. Alice, the initiating peer, needs to do an SPK1 and an SPK3 signing, and an SPK2 and an
SPK4 verification. The number of G1 multi-EXPs, GT multi-EXPs and pairings are 24, 10 and 4
respectively. Some of these operations can be precomputed before the the start of an authentication;
with precomputation, those numbers become 10, 4 and 2 respectively. Bob, the responding peer,
needs to an SPK2 and an SPK4 signing, and an SPK1 and an SPK3 verification. The number of
G1 multi-EXPs, GT multi-EXPs and pairings are 22, 11 and 5 respectively. With precomputation,
they become 14, 8 and 4. In addition to these calculation, Alice and Bob also need to compute
several G1 multi-EXPs during the protocol.

Table 1 summarizes the computational costs for Alice and Bob.
4A multi-EXP computes the product of exponentiations faster than performing the exponentiations separately.

We assume that one multi-EXP operation multiplies up to 3 exponentiations.

16

7 Discussion

Resilience to Sybil Attacks Sybil attacks [Dou02] are attacks during which an individual entity
masquerades as multiple simultaneous identities. Any authentication mechanisms including PPAA
must defend Sybil attacks launched against user registration. Approaches exist to ensure that only
legitimate users can register and that no legitimate user can register more than once. They include
trusted certification such as X.509 [AF99], resource testing, where resources could be IP addresses or
“friendship” in social networks or PGP-like web of trust, recurring costs imposed by cryptographic
puzzles or CAPTCHAs [vABHL03], and trusted devices with certain degree of tamper-resistance,
such as Trusted Platform Modules (TPMs) [TPM07].

The practicality of the above approaches depends on the application scenarios. In the example
of VANets, the Department of Motor Vehicles (DMV) can play the role of the GM with little
overhead. Additionally, the makers of the vehicles can install a trusted device preloaded with
a credential in each of vehicle they manufacture. In the example of P2P systems over a public
network such the Internet, demonstrating the possession of IP addresses is a pragmatic and thus
more popular approach, even though it does not have the highest resilience to Sybil attacks.

Revocation Any practical authentication mechanism must allow for credential revocation. In
the settings of PPAA, one might want to revoke a credential because the peer user in possession of
that credential is compromised or misbehaving. For example, in VANets, the credential issued to
a vehicle should be revoked when the vehicle is reported to have been stolen. Revocation allows
for easier identification and thus tracking of stolen vehicles while maintaining the privacy of other
vehicles as stolen cars with revoked credentials can no longer be anonymously authenticated by,
e.g. a highway toll booth.

Our construction of PPAA can be modified in a straightforward manner to allow for creden-
tial revocation by adopting existing standard techniques [CL02a, BS04]: Alice and Bob verifiably
encrypt part of their credentials during SPK1 and SPK2 respectively during the authentication
under the public key of an entity usually referred to as the Revocation Manager. Now in addition
to the original authentication, Alice and Bob have to convince one another that they have not been
revoked. In the approach of verifier-local revocation [BS04], each user keeps a list of revoked users;
in the approach of dynamic accumulators [CL02a], each non-revoked user updates their credential
when someone else’s has been revoked.

Authenticated Key-exchange The authentication protocol in PPAA can be easily turned into
an authenticated Diffie-Hellman key-exchange. Specifically, Alice additionally includes in m1 an
element ga0 with a ∈R Zp in Step 1 of the authentication protocol, while Bob additionally includes
in m2 an element gb0 with b ∈R Zp in Step 3. When the protocol terminates, both of them can
derive a shared session key as gab0 = (ga0)b = (gb0)a . Since m1 and m2 are signed with SPK1 and
SPK2 respectively, Alice and Bob can use the session key to establish a confidential channel with
the same privacy and accountability guarantees as in PPAA.

Blending Secret handshakes into PPAA As discussed, anonymous SHSs such as Ateneise et
al.’s [ABK07] do not provide the linkability desired by the servers. On the other hand, PPAA leaks
the initiating peer’s group affiliation to any responding peer who might not be a group member.
Hence, each of them has its advantage over the other. Fortunately, one can enjoy the advantages of

17

both by composing the two schemes. Specifically, two group members first execute an anonymous
secret handshake to authenticate the group membership of one another and establish a secure
channel, then they execute an PPAA authentication within that channel.

Furthermore, carrying out PPAA authentication within a secure channel has the additional
benefit of preventing eavesdroppers from linking authentication traffic.

Fairness In our PPAA construction, a malicious responding peer Bob might decide to stop after
receiving Alice’s protocol message at step 3 of the authentication protocol so that he could learn
Alice’s tag without Alice being able to learn his. The revealing of tags between Alice and Bob is
thus not guaranteed to be fair in our construction.

Borrowing ideas from optimistic fair exchange [ASW97, ASW98], one could augment fairness
to PPAA by modifying it as follows. Alice requires Bob to additionally send a verifiable encryption
of r2 under the public key of some Trusted Third Party (TTP) in step 2 also that in case Bob
stops before step 4, Alice can still reconstruct the tag with the help of the TTP. However, such a
modification puts Bob’s privacy at risk, as the collusion between Alice the TTP can identity Bob.
We leave the exploration of how to provide fairness without sacrificing privacy as future work.

8 Conclusion

In this paper, we have introduced Peer-to-Peer Anonymous Authentication (PPAA), a credential
system that correctly balances user privacy and accountability in P2P systems where not just
clients but also servers are concerned with their privacy. We have shown that such a credential
system finds applications in many P2P systems such as VANets. We have presented the first PPAA
construction, which is both secure and very efficient.

Acknowledgments

The authors would like to thank Man Ho Au for his suggestion on an initial tag design, the
anonymous reviewers for their insightful reviews, and the members in the Security Reading Group
at Dartmouth College (SRG@Dartmouth)5 who discussed this paper for their helpful feedback.

5https://wiki.cs.dartmouth.edu/srg/

18

https://wiki.cs.dartmouth.edu/srg/

References

[ABK07] Giuseppe Ateniese, Marina Blanton, and Jonathan Kirsch. Secret Handshakes with
Dynamic and Fuzzy Matching. In NDSS. The Internet Society, 2007.

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and
provably secure coalition-resistant group signature scheme. In Mihir Bellare, editor,
CRYPTO, volume 1880 of LNCS, pages 255–270. Springer, 2000.

[AF99] C. Adams and S. Farrell. Internet X.509 Public Key Infrastructure Certificate Man-
agement Protocols. Internet Engineering Task Force: RFC 2510, 1999.

[ASM06] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic -taa. In Roberto De
Prisco and Moti Yung, editors, SCN, volume 4116 of LNCS, pages 111–125. Springer,
2006.

[ASW97] N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair
exchange. In ACM Conference on Computer and Communications Security, pages
7–17, 1997.

[ASW98] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital
signatures (extended abstract). In EUROCRYPT, pages 591–606, 1998.

[ASY06] Man Ho Au, Willy Susilo, and Siu-Ming Yiu. Event-oriented k-times revocable-iff-
linked group signatures. In Lynn Margaret Batten and Reihaneh Safavi-Naini, editors,
ACISP, volume 4058 of LNCS, pages 223–234. Springer, 2006.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian
Cachin and Jan Camenisch, editors, EUROCRYPT, volume 3027 of LNCS, pages 56–
73. Springer, 2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew K.
Franklin, editor, CRYPTO, volume 3152 of LNCS, pages 41–55. Springer, 2004.

[BDS+03] Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana K. Smetters, Jessica Staddon,
and Hao-Chi Wong. Secret Handshakes from Pairing-Based Key Agreements. In IEEE
Symposium on Security and Privacy, pages 180–196. IEEE Computer Society, 2003.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm for
designing efficient protocols. In Proceedings of the 1st ACM conference on Computer
and communications security, pages 62–73. ACM Press, 1993.

[BS04] Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation. In
ACM Conference on Computer and Communications Security, pages 168–177. ACM,
2004.

[Cha82] David Chaum. Blind signatures for untraceable payments. In CRYPTO, pages 199–
203, 1982.

19

[CHK+06] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and Mira
Meyerovich. How to win the clonewars: efficient periodic n-times anonymous au-
thentication. In ACM Conference on Computer and Communications Security, pages
201–210. ACM, 2006.

[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In
Ronald Cramer, editor, EUROCRYPT, volume 3494 of LNCS, pages 302–321. Springer,
2005.

[CJT04] Claude Castelluccia, Stanislaw Jarecki, and Gene Tsudik. Secret handshakes from ca-
oblivious encryption. In Pil Joong Lee, editor, ASIACRYPT, volume 3329 of LNCS,
pages 293–307. Springer, 2004.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In Birgit Pfitzmann, editor,
EUROCRYPT, volume 2045 of LNCS, pages 93–118. Springer, 2001.

[CL02a] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Moti Yung, editor, CRYPTO, volume
2442 of LNCS, pages 61–76. Springer, 2002.

[CL02b] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In
Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN, volume 2576
of LNCS, pages 268–289. Springer, 2002.

[CPHL07] Giorgio Calandriello, Panos Papadimitratos, Jean-Pierre Hubaux, and Antonio Lioy.
Efficient and robust pseudonymous authentication in vanet. In VANET ’07: Proceed-
ings of the fourth ACM international workshop on Vehicular ad hoc networks, pages
19–28, New York, NY, USA, 2007. ACM Press.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups
(extended abstract). In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294 of LNCS,
pages 410–424. Springer, 1997.

[CvH91] David Chaum and Eugène van Heyst. Group signatures. In EUROCRYPT, pages
257–265, 1991.

[CWC05] Nicolas Christin, Andreas S. Weigend, and John Chuang. Content availability, pol-
lution and poisoning in file sharing peer-to-peer networks. In ACM Conference on
Electronic Commerce, pages 68–77. ACM, 2005.

[DKNS04] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anonymous
identification in ad hoc groups. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT, volume 3027 of LNCS, pages 609–626. Springer, 2004.

[Dou02] John R. Douceur. The sybil attack. In Peter Druschel, M. Frans Kaashoek, and Antony
I. T. Rowstron, editors, IPTPS, volume 2429 of LNCS, pages 251–260. Springer, 2002.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
1988.

20

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GR04] Steven D. Galbraith and Victor Rotger. Easy Decision-Diffie-Hellman Groups. LMS
Journal of Compuation and Mathematics, 7:201–218, 2004.

[Kru07] John Krumm. Inference attacks on location tracks. In Anthony LaMarca, Marc
Langheinrich, and Khai N. Truong, editors, Pervasive, volume 4480 of LNCS, pages
127–143. Springer, 2007.

[NIS01] NIST. FIPS 180-2: Secure hash standard (SHS). Technical report, National Institute
of Standards and Technology (NIST), 2001. http://csrc.nist.gov/publications/
fips/fips180-2/fips180-2withchangenotice.pdf.

[NSN05] Lan Nguyen and Reihaneh Safavi-Naini. Dynamic k-times anonymous authentication.
In John Ioannidis, Angelos D. Keromytis, and Moti Yung, editors, ACNS, volume 3531
of LNCS, pages 318–333, 2005.

[RH07] Maxim Raya and Jean-Pierre Hubaux. Securing vehicular ad hoc networks. Journal
of Computer Security, 15(1):39–68, 2007.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd,
editor, ASIACRYPT, volume 2248 of LNCS, pages 552–565. Springer, 2001.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT, pages 256–266, 1997.

[TAKS07] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. Blacklistable anony-
mous credentials: blocking misbehaving users without TTPs. In CCS ’07: Proceedings
of the 14th ACM conference on Computer and communications security, pages 72–81,
New York, NY, USA, 2007. ACM.

[TFS04] Isamu Teranishi, Jun Furukawa, and Kazue Sako. k-times anonymous authentication
(extended abstract). In Pil Joong Lee, editor, ASIACRYPT, volume 3329 of LNCS,
pages 308–322. Springer, 2004.

[TPM07] TPM Work Group. TCG TPM Specification Version 1.2 Revision 103. Technical
report, Trusted Computing Group, 2007.

[TS06] Isamu Teranishi and Kazue Sako. k-times anonymous authentication with a constant
proving cost. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors,
Public Key Cryptography, volume 3958 of LNCS, pages 525–542. Springer, 2006.

[TS08] Patrick P. Tsang and Sean W. Smith. PPAA: Peer-to-peer anonymous authentication.
In ACNS, LNCS. Springer, 2008. To appear.

[TWC+04] Patrick P. Tsang, Victor K. Wei, Tony K. Chan, Man Ho Au, Joseph K. Liu, and
Duncan S. Wong. Separable linkable threshold ring signatures. In Anne Canteaut and
Kapalee Viswanathan, editors, INDOCRYPT, volume 3348 of LNCS, pages 384–398.
Springer, 2004.

21

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

[TX06] Gene Tsudik and Shouhuai Xu. A flexible framework for secret handshakes. In George
Danezis and Philippe Golle, editors, Privacy Enhancing Technologies, volume 4258 of
LNCS, pages 295–315. Springer, 2006.

[vABHL03] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford. Captcha: Using
hard ai problems for security. In Eli Biham, editor, EUROCRYPT, volume 2656 of
LNCS, pages 294–311. Springer, 2003.

[XY04] Shouhuai Xu and Moti Yung. k-anonymous secret handshakes with reusable creden-
tials. In ACM Conference on Computer and Communications Security, pages 158–167.
ACM, 2004.

22

A Formal Security Definitions

We formally define the security of PPAA. For each security requirement given in Section 5.2, we
define a corresponding game played between the Challenger C and the Adversary A. A security
requirement is satisfied in a PPAA construction if no Probabilistic Poly-Time (PPT) adversary can
win in the corresponding game with certain probabilities. To break the security of a construction,
A thus tries to win in at least one of the games with the required probabilities. A’s capabilities
when trying to win in a game is modeled as oracles maintained by C.

Let set S and integer n be states kept by these oracles, initially set to ε and 0 respectively. The
oracles are defined as follows:

• Reg simulates a run of the registration protocol between an honest user and an honest GM
and returns the resulting protocol transcript to the adversary. The newly registered honest
peer is given the index n. n is added to S and then incremented.

• Reg-U acts on behalf of honest user and interacts with the corrupt GM in a run of the
registration protocol. Upon successful termination, the newly registered honest peer is given
the index n. n is added to S and then incremented.

• Reg-G acts on behalf of the honest GM and interacts with a corrupt peer in a run of the
registration protocol. Upon successful termination, the newly registered corrupt peer is given
the index n. n is then incremented.

• Corr(i) the corruption of honest user i ∈ S by the adversary. It returns the user’s credential
to the adversary. n is then removed from S.

• Auth(eid, i, j) simulates a run of the authentication protocol between honest client i ∈ S
and honest server j ∈ S\{i} during event eid and returns the resulting transcript to the
adversary.

• Auth-C(eid, i) acts on behalf of honest client i ∈ S and interacts with a corrupt server in
the authentication protocol during event eid.

• Auth-S(eid, j) acts on behalf of honest server j ∈ S and interacts with a corrupt client in
the authentication protocol during event eid.

A can query arbitrarily and adaptively the oracles throughout the game, subject to appropriate
restrictions specified in the games. Accesses to Corr are atomic. Accesses to Reg or Reg-G
must not overlap. Without loss of generality, Corr(i) is disabled during queries to Auth(·, i, ·),
Auth(·, ·, i), Auth-C(·, i) and Auth-S(·, i).

A.1 Mis-authentication Resistance and Peer Accountability

Mis-authentication Resistance is implied by Peer Accountability: if an unregistered client (resp.
server) Alice can be successfully authenticated, then she can be successfully authenticated by a
server (resp. client) during an event not linked to any authentication by the same server (resp.
client) during the same event. The following game between the Challenger C and the Adversary A
is defined for Peer Accountability.

23

• (Setup Phase) C executes Setup on a sufficiently large security parameter and gives gpk to A.

• (Probing Phase) A is given access to all oracles except Reg-U.

• (End Game Phase) A outputs (eid∗, j∗).

Let n∗ be the number of successful queries to Auth-S(eid∗, j∗) or Auth-C(eid∗, j∗) such that
all the associated tags are pairwisely not linked. Let n be the sum of the number of queries to
Reg-G and that to Corr. A wins in the game if n∗ > n. Peer Accountability is satisfied if no
PPT adversary can win in the game with non-negligible probability.

A.2 Peer Privacy

The following game between the Challenger C and the Adversary A are defined for Peer Privacy.

• (Setup Phase) C runs Setup on a sufficiently large security paramter and gives both gpk and
gsk to A.

• (Probing Phase I) A is given access to all oracles except Reg and Reg-G.

• (Challenge Phase) A gives C eid∗ and distinct i∗0, i∗1 and j∗ such that the following condition
holds:

Condition 1 For b ∈ {0, 1}, all statements below are true:

1. 6 ∃Corr(i∗b).

2. 6 ∃Auth(eid∗, i∗b , j
∗) and 6 ∃Auth(eid∗, j∗, i∗b).

3. If Corr(j∗) exists, then there exists no Auth-C(eid∗, i∗b) or Auth-S(eid∗, i∗b) after
Corr(j∗).

C then picks b∗ ∈R {0, 1}.

• (Probing Phase II) A is given access to all oracles, and four new ones: Auth∗C(j), Auth∗S(j),
Auth-C∗() and Auth-S∗(), which respectively behave as Auth(eid∗, i∗b∗ , j), Auth(eid∗, j, i∗b∗),
Auth-C(eid∗, i∗b∗) and Auth-S(eid∗, i∗b∗). Condition 1 must still hold. In addition, if
Corr(j∗) exists, then there exists no Auth-C∗() or Auth-S∗() after Corr(j∗).

• (End Game Phase) A outputs b′.

A wins in the game if b′ = b∗. Peer Privacy is satisfied if no PPT adversary can win in any of
the two games with probability non-negligibly greater than 1/2.

Remarks Item 1 in Condition 1 requires that peers i∗0 and i∗1 under attack are honest. It makes
no sense to protect the privacy of a peer corrupted by the adversary from the adversary. Item 2
requires that neither of honest peers i∗0 and i∗1 mutually authenticates with peer j∗ during the
event with identifier eid∗ when peer j∗ is still honest, because otherwise the adversary would have
known the corresponding tag and could use it to identify peer i∗0 or i∗1 when the peer mutually
authenticates with peer j∗ during the same event. Restricting peers i∗0 and i∗1 as such does not

24

weaken the adversary’s capabilities because PPAA is designed to provide linking correctness as
defined in Definition 2. Item 3 further forbids peer i∗0 and i∗1 to mutually authenticate during
the event with identifier eid∗ with any peer not known to be still honest after the adversary has
corrupted peer j∗, because otherwise the adversary could act as peer j∗ and achieve the same effect
as in Item 2.

A.3 Framing Resistance

The following game between the Challenger C and the Adversary A is defined for Framing Resis-
tance.

• (Setup Phase) C executes Setup on a sufficiently large security parameter and gives both gpk
and gsk to A.

• (Probing Phase) A is given access to all oracles except Reg and Reg-G.

• (End Game Phase) A outputs (eid∗, i∗0, i
∗
1, b), where b ∈ {0, 1}.

A wins in the game if there exists no query to Corr(i∗
b̄
), there exist a successful query Q1 to

Auth(eid∗, i∗0, i
∗
1) and a successful query Q2 to Auth-S(eid∗, i∗b) or Auth-C(eid∗, i∗b) such that

the tags associated with Q1 and Q2 are linked. Framing Resistance is satisfied if no PPT adversary
can win in the game with non-negligible probability.

Remarks Peer i∗
b̄

is the honest user being framed. Q1 is an authentication he was actually
involved. Q2 is an authentication he wasn’t involved, but is linked to Q1.

B Implementation

B.1 Software Prototyping

We prototyped our proposed PPAA construction as a software library written in C. We used the
Pairing-Based Cryptography (PBC) Library6 (version 0.4.12) for the underlying elliptic-curve and
pairing operations, which in turn uses the GNU MP Bignum (GMP) Library (version 4.2.1) for field
arithmetics. We also used OpenSSL for some of its cryptographic routines such as SHA-1 [NIS01]
for instantiating the secure cryptographic hash functions.

We chose MNT curves with embedding degree 6 that contain a subgroup of prime order as the
DDH assumption is conjectured to hold in G1 instantiated as such. In particular, we used the curve
known as 9563-201-181 in the PBC Library, where 181 denotes |p|, i.e. the security parameter λ.7

B.2 Empirical Performance Results

The machine on which we ran our experiments was an Lenovo/IBM Thinkpad T60 laptop with
an Intel dual-core 2GHz CPU and 1.5GB of RAM, running Ubuntu GNU/Linux 7.04. Notice that
this machine is similar to a typical end-user machine in P2P systems in terms of computational

6The Pairing-Based Cryptography Library. http://crypto.stanford.edu/pbc/
7The hardness of solving the DDH problem in G1 instantiated this way is believed to be comparable solving the

same problem in a group of integers of size 1024 bits, which is in turn believed to be intractable.

25

http://crypto.stanford.edu/pbc/

Alice (the Initator) Bob (the Responder)
Precomputation 2.21s 2.03s

Online computation 0.35s 0.34s
Protocol Latency 0.35s

Table 2: Experiments show that our authentication protocol is efficient: Alice and Bob experience
only a latency of only 0.35s, irrespective of the number of peers in the system.

power. The performance figures gathered from the experimentation thus closely reflect those in a
real deployment. All the timings reported below are averaged over 10 randomized runs of the same
experiments. We only report timing figures on the authentication protocol.

Before the actual authentication run, a user Alice who is going to play the role of the initiating
peer initializes a initiator context structure in our prototype, during which all the precomputable
operations are performed. This took Alice 2.21s. Similarly, a user Bob initializes a responder
context structure, foreseeing that he will play the role of the responding peer in a future authen-
tication run. This took Bob 2.03s. With their respective context structures initialized, Alice and
Bob experienced a total latency of 0.35s executing the PPAA authentication protocol.

These figures are also listed in Table 2.

C SPK Instantiation

We detail the instantiation of the SPKs in Section 6.2. Let êi denote ê(gi, h0) for all i = 0 to
4. It is straightforward to show that the instantiation of each SPK is an non-interactive honest-
verifier zero-knowledge proof-of-knowledge protocol with special soundness under the appropriate
assumptions in the random oracle model. We thus omit the proof for conciseness.

C.1 SPK0

Signing To sign a signature for SPK0 on message M ∈ {0, 1}∗, do the following using the
knowledge of (x, y, z′):

• (Commitment.) Compute T = grx1 g
ry
2 g

rz′
3 , where rx, ry, rz′ ∈R Zp.

• (Challenge.) Compute c = Ĥ(T ||M).

• (Response.) Compute sx = rx − cx, sy = ry − cy and sz′ = rz′ − cz′.

Output the signature Π0 as (c, sx, sy, sz′).

Verification To verify a signature Π0 for SPK0 on messageM ∈ {0, 1}∗, compute T ′ = gsx1 g
sy
2 g

sz′
3 Cc

and then c′ = Ĥ(T ′||M). Output valid if c = c′. Output invalid otherwise.

C.2 SPK1

Signing To sign a signature Π1 for SPK1 on message M ∈ {0, 1}∗, do the following using the
knowledge of (A, e, x, y, z, r):

26

• (Auxiliary commitment.) Pick ρ1, ρ2 ∈R Zp. Compute C1 = gρ14 g
ρ2
5 and C2 = Agρ24 .

• Sign a signature for SPK ′1 on message M ′ = C1||C2||M , where SPK ′1 denotes:

SPK


 e, x, y, z, r,

ρ1, ρ2,
α1, α2, β1, β2

 :

ê(C2,w)
ê0

= ê(C2, h0)−eêx1 ê
y
2ê
z
3ê
α2
4 ê(g4, w)ρ2 ∧

C1 = gρ14 g
ρ2
5 ∧

1 = C−e1 gα1
4 gα2

5 ∧ 1 = C−r1 gβ1
4 gβ2

5 ∧
U1 = Cr2g

−β2
4 ∧ V1 = H(eid)r

 ,

using the knowledge of (e, x, y, z, r, ρ1, ρ2, α1, α2, β1, β2), where αi = eρi and βi = rρi for
i = 1, 2, which can be done in the following three steps.

• (Commitment.) Pick re, rx, ry, rz, rr, rρ1 , rρ2 , rα1 , rα2 , rβ1 , rβ2 ∈R Zp. Compute

T1 = ê(C2, h0)−re êrx1 ê
ry
2 ê

rz
3 ê

rα2
4 ê(g4, w)rρ2 ,

T2 = g
rρ1
4 g

rρ2
5 ,

T3 = C−re1 g
rα1
4 g

rα2
5 , T4 = C−rr1 g

rβ1
4 g

rβ2
5 ,

T5 = Crr2 g
−rβ2
4 , T6 = H(eid)rr .

• (Challenge.) Compute c = Ĥ(T1|| . . . ||T6||M ′).

• (Response.) Compute

se = re − ce, sx = rx − cx, sy = ry − cy,
sz = rz − cz, sr = rr − cr,
sρ1 = rρ1 − cρ1, sρ2 = rρ2 − cρ2,
sα1 = rα1 − cα1, sα2 = rα2 − cα2,
sβ1 = rβ1 − cβ1, sβ2 = rβ2 − cβ2.

Output the signature Π1 as (C1, C2, c, se, sx, sy, sz, sr, sρ1 , sρ2 , sα1 , sα2 , sβ1 , sβ2).
Signing requires 7 multi-EXPs in G1, 3 multi-EXPs in GT and 1 pairing. All operations can be

precomputed by Alice during an authentication.

Verification To verify a signature Π1 for SPK1 on message M ∈ {0, 1}∗, do the following:

• Compute
T ′1 = ê(C2, h0)−se2 êsx1 ê

sy
2 ê

sz
3 ê

sα2
4 ê(g4, w)sρ2

(
ê(C2,w)
ê0

)c
,

T ′2 = g
sρ1
4 g

sρ2
5 Cc1,

T ′3 = C−se1 g
sα1
4 g

sα2
5 , T ′4 = C−sr1 g

sβ1
4 g

sβ2
5 ,

T ′5 = Csr2 g
−sβ2
4 U c1 , T ′6 = H(eid)srV c

1 .

• Compute c′ = Ĥ(T ′1|| . . . ||T ′6||M ′), where M ′ = C1||C2||M .

Output valid if c = c′. Output invalid otherwise.
Verification requires 5 multi-EXPs in G1, 4 multi-EXPs in GT and 2 pairings.

27

C.3 SPK2

Signing To sign a signature Π2 for SPK2 on message M ∈ {0, 1}∗, do the following using the
knowledge of (A, e, x, y, z, r):

• (Auxiliary commitment.) Pick ρ1, ρ2 ∈R Zp. Compute C1 = gρ14 g
ρ2
5 and C2 = Agρ24 .

• Sign a signature for SPK ′2 on message M ′ = C1||C2||M , where SPK ′2 denotes:

SPK


 e, x, y, z, r,

ρ1, ρ2,
α1, α2, β1, β2

 :

ê(C2,w)
ê0

= ê(C2, h0)−eêx1 ê
y
2ê
z
3ê
α2
4 ê(g4, w)ρ2 ∧

C1 = gρ14 g
ρ2
5 ∧

1 = C−e1 gα1
4 gα2

5 ∧ 1 = C−r1 gβ1
4 gβ2

5 ∧
U2 = Cr2g

−β2
4 ∧ V2 = H(eid)r ∧

W2 = Ux1 V
y

1


,

using the knowledge of (e, x, y, z, r, ρ1, ρ2, α1, α2, β1, β2), where αi = eρi and βi = rρi for
i = 1, 2, which can be done in the following three steps.

• (Commitment.) Pick re, rx, ry, rz, rr, rρ1 , rρ2 , rα1 , rα2 , rβ1 , rβ2 ∈R Zp. Compute T1, T2, . . . , T6

as in SPK1. Further compute
T7 = U rx1 V

ry
1 .

• (Challenge.) Compute c = Ĥ(T1|| . . . ||T7||M ′).

• (Response.) Same as that in SPK1.

Output the signature Π1 as (C1, C2, c, se, sx, sy, sz, sr, sρ1 , sρ2 , sα1 , sα2 , sβ1 , sβ2).
Signing requires 8 multi-EXPs in G1, 3 multi-EXPs in GT and 1 pairing. Among them only 1

multi-EXP in G1, namely T7, can’t be precomputed by Bob during an authentication.

Verification To verify a signature Π1 for SPK1 on message M ∈ {0, 1}∗, do the following:

• Compute T ′1, T
′
2, . . . , T

′
4 as in SPK1. Further compute

T ′5 = Csr2 g
−sβ2
4 U c2 , T

′
6 = H(eid)srV c

2 , T
′
7 = U sx1 V

sy
1 W c

2 .

• Compute c′ = Ĥ(T ′1|| . . . ||T ′7||M ′), where M ′ = C1||C2||M .

Output valid if c = c′. Output invalid otherwise.
Verification requires 6 multi-EXPs in G1, 4 multi-EXPs in GT and 2 pairings.

C.4 SPK3

Signing To sign a signature Π3 for SPK3 on message M ∈ {0, 1}∗, do the following using the
knowledge of (A, e, x, y, z, r):

• (Auxiliary commitment.) Pick ρ1, ρ2 ∈R Zp. Compute C1 = gρ14 g
ρ2
5 and C2 = Agρ24 .

28

• Sign a signature for SPK ′3 on message M ′ = C1||C2||M , where SPK ′2 denotes:

SPK


 e, x, y, z, r,

ρ1, ρ2,
α1, α2, β1, β2

 :

ê(C2,w)
ê0

= ê(C2, h0)−eêx1 ê
y
2ê
z
3ê
α2
4 ê(g4, w)ρ2 ∧

C1 = gρ14 g
ρ2
5 ∧

1 = C−e1 gα1
4 gα2

5 ∧ 1 = C−r1 gβ1
4 gβ2

5 ∧
U1 = Cr2g

−β2
4 ∧ V1 = H(eid)r ∧

W1 = Ux2 V
y

2 ∧ W2 = τ r1 ∧


,

using the knowledge of (e, x, y, z, r, ρ1, ρ2, α1, α2, β1, β2), where αi = eρi and βi = rρi for
i = 1, 2, which can be done in the following three steps.

• (Commitment.) Pick re, rx, ry, rz, rr, rρ1 , rρ2 , rα1 , rα2 , rβ1 , rβ2 ∈R Zp. Compute T1, T2, . . . , T6

as in SPK1. Further compute

T7 = U rx2 V
ry

2 , T8 = τ rr1 .

• (Challenge.) Compute c = Ĥ(T1|| . . . ||T8||M ′).

• (Response.) Same as that in SPK1.

Output the signature Π1 as (C1, C2, c, se, sx, sy, sz, sr, sρ1 , sρ2 , sα1 , sα2 , sβ1 , sβ2).
Signing requires 9 multi-EXPs in G1, 3 multi-EXPs in GT and 1 pairing. Among them only 2

multi-EXPs in G1, namely T7 and T8, can’t be precomputed by Alice during an authentication.

Verification To verify a signature Π1 for SPK1 on message M ∈ {0, 1}∗, do the following:

• Compute T ′1, T
′
2, . . . , T

′
6 as in SPK1. Further compute

T ′7 = U sx2 V
sy

2 W c
1 , T

′
8 = τ sr1 W c

2 .

• Compute c′ = Ĥ(T ′1|| . . . ||T ′8||M ′), where M ′ = C1||C2||M .

Output valid if c = c′. Output invalid otherwise.
Verification requires 7 multi-EXPs in G1, 4 multi-EXPs in GT and 2 pairings.

C.5 SPK4

Signing To sign a signature for SPK4 on message M ∈ {0, 1}∗, do the following using the
knowledge of (r):

• (Commitment.) Compute T1 = H(eid)rr and T2 = τ rr2 , where rr ∈R Zp.

• (Challenge.) Compute c = Ĥ(T1||T2||M).

• (Response.) Compute sr = rr − cr.

Output the signature Π4 as (c, sr).
Signing requires 2 multi-EXPs in G1, one of which, namely T2, can be precomputed.

29

SPK Algorithm Number of Operations
G1 multi-EXPs GT multi-EXPs Pairings

SPK0
Signing 1 0 0

Verification 2 0 0

SPK1
Signing 7 3 1

Verification 5 4 2

SPK2
Signing 8 3 1

Verification 6 4 2

SPK3
Signing 9 3 1

Verification 7 4 2

SPK4
Signing 2 0 0

Verification 2 0 0

Table 3: Timing complexity of the SPKs

Verification To verify a signature Π4 for SPK0 on message M ∈ {0, 1}∗, do the following:

• Compute T ′2 = H(eid)srV c
2 and T ′2 = τ sr2 W c

1 .

• Compute c′ = Ĥ(T ′1||T ′2||M).

Output valid if c = c′. Output invalid otherwise.
Verification requires 2 multi-EXPs in G1.

C.6 Computational Costs

Table 3 summarizes the computational costs in terms of the number of pairing computation and
multi-exponentiations (multi-EXPs).

D Proof Sketches

Define [n] = {1, 2, . . . , n} for all non-negative integer n. If S is a set, a ∈R S means that a is
assigned to an element drawn from S uniformly at random.

We now sketch the proof of Theorem 1.

D.1 Peer Accountability

We assume the contrary that there exists a PPT the adversary A who can win in the game defined
for Peer Accountability with non-negligible probability, and show how to construct a PPT simulator
S that solves a given q-SDH problem instance with non-negligible probability, contradicting to the
q-SDH assumption.

On input an q-SDH problem instance, S generates the system’s public parameters and the
GM’s key pair using the same technique in [BB04], which is also used by schemes such as [ASM06,
TAKS07]. In this way, S obtains (q − 1) SDH pairs from the problem instance and the knowledge
of any new distinct SDH pair enables S to solve the given problem instance. Let q be the maximum
number of peer users registered throughout the game. S can correctly answer the oracle queries
that involve all but one peer user. S picks that user uniformly at random. That is, that user is the
q∗-th registered user, where q∗ ∈R [q].

30

More concretely, S uses assigned a distinct SDH pair to each of the (q − 1) users and creates a
credential for that user using the assigned SDH pair, while the credential for user q∗ is calculated
differently. We refer the readers to [BB04] for the details. Simulating Reg is easy because of the
HVZK-ness of SPK0 in the registration protocol. Registering users through Reg-G requires S to
first rewind the adversary during SPK0 to extract (x, y, z′). Finally, the HVZK-ness of SPK1 to
SPK4 allows S to correctly simulate Auth, by first selecting V1, V2 and then simulating protocol
transcript for such V1 and V2. Auth-C and Auth-S can be correctly simulated in a similar way.

Eventually, A has won in the game. Denote by tag(1), tag(2), . . . , tag(n∗) the n∗ pairwisely
not linked tags, i.e. tag(i) 6= tag(j) for all distinct i, j ∈ [n∗], output by Auth-C(eid∗, j∗) or
Auth-S(eid∗, j∗). Let the credential of peer j∗ be (A∗, e∗, x∗, y∗, z∗). Then the special soundness
property of SPK0 to SPK4 implies that A knows credential (Ai, ei, xi, yi, zi) such that tag(i) =
{Ax∗i H(eid)yi , A∗xiH(eid)y

∗} for all i ∈ [n∗]. More preciously, such knowledge can be extracted
from A by rewinding two times, one at each of, in the case of Auth-S, SPK1 and SPK3 or, in the
case of Auth-C, SPK2 and SPK4.

Therefore, for all distinct i, j ∈ [n∗], Ax
∗
i H(eid)yi 6= Ax

∗
j H(eid)yj orA∗xiH(eid)y

∗ 6= A∗xjH(eid)y
∗
,

which implies Ai 6= Aj or xi 6= xj or yi 6= yj , which in turn implies (Ai, xi, yi) 6= (Aj , xj , yj). Now if
Ai = Aj , then xi 6= xj or yi 6= yj , which implies ei 6= ej unless DL problem is easy. As a result, we
have (Ai, ei) 6= (Aj , ej) for all distinct i, j ∈ [n∗]. Now, since n∗ > n = q, there exists an i∗ ∈ [n∗]
such that (Ai∗ , ei∗) can be used to compute, with probability at least 1/q, a distinct SDH pair as
the solution to the problem instance. ut

D.2 Peer Privacy

We assume the contrary that there exists a PPT the adversary A who can win in the game defined
for Peer Privacy with probability non-negligibly greater than 1/2, and show how to construct a
PPT simulator S that solves a given DDH problem instance with probability non-negligibly greater
than 1/2, contradicting to the XDH assumption.

Let q be the upper bound on the number of queries to Reg-U made by A throughout the
game. Let q∗ ∈R [q]. Given a DDH problem instance (g, h, u, v), S sets g0 in the system’s public
parameters to g and generates the rest of the system’s public parameters and the GM’s key pair
honestly, i.e. by executing the respective algorithms according to specification. S simulates all
oracles, with the exception of the hash oracle, honestly when the peer involved is not the q∗-th
registered peer. To simulate the random oracle for H, S assigns, for each eid appeared in the
game, H(eid) to gρeid , where ρeid ∈R Zp.

To simulate Reg-U for the q∗-th registered user, S simulates the registration protocol as if y
in the user’s credential is logg h without actually knowing the value of logg h. S can do so correctly
because, for any x ∈ Zp and y = logg h, there exists an z′ ∈ Zp such that C = gx1g

y
2g
z′
3 . To simulate

Auth-C(eid, q∗, ·), Auth-C(eid, ·, q∗), Auth-C(eid, q∗) and Auth-S(eid, q∗), S first computes
V for peer q∗ using h and ρeid and then uses such V to simulate the protocol execution. Note that
S can’t answer Corr(q∗) correctly.

Now with probability at least 1/q, A have not never queried Corr on q∗ and one of i∗0 and i∗1
equals q∗. S then computes V for peer q∗ using u and v instead and then uses such V to simulate
the protocol execution. Note that restricting A’s queries to satisfy Condition 1 in the game is a
necessary condition for the correctness of the above simulation.

When A eventually returns his guess, S decides that the given problem instance is a DDH-tuple
if the guess is correct; otherwise, S randomly guesses an answer. If the given problem instance is

31

a DDH-tuple, then S’s answer is correct if A’s answer is correct. Otherwise, S’s answer is correct
with probability 1/2. Combining with the probability arguments above, S can use A to solve the
given problem instance with probability non-negligibly greater than 1/2. ut

D.3 Framing Resistance

We assume the contrary that there exists a PPT the adversary A who can win in the game defined
for Framing Resistance with non-negligible probability, and show how to construct a PPT simulator
S that solves a given Discrete Logarithm (DL) problem instance with non-negligible probability,
contradicting to the XDH assumption. (The XDH assumption implies the DDH assumption, which
in turn implies the DL assumption.)

Let q be the maximum number of queries to Reg-G. Let q∗ ∈R [q]. Given a DL problem
instance (g, u), S sets g0 in the system’s public parameters to g and generates the rest of the
system’s public parameters and the GM’s key pair honestly. Let peer q∗ be the peer registered into
the system as a result of querying Reg-G for the q∗ time. S answers all queries to all the oracles,
except the hash oracle, by executing the algorithms honestly if the queries do not involve peer q∗.
To simulate the random oracle for H, S assigns, for each eid appeared in the game, H(eid) to
gρeid , where ρeid ∈R Zp.

S responds to oracle queries involving peer q∗ as follows. For Reg-U, S simulates the registra-
tion protocol as if y in the user’s credential is logg u without actually knowing the value of logg u.
S can do so correctly because for any x ∈ Zp and y = logg u, there exists an z′ ∈ Zp such that
C = gx1g

y
2g
z′
3 . Upon receiving (A, e, z′′) from A, S records (A, e). To simulate Auth(eid, q∗, ·),

Auth(eid, ·, q∗, Auth-C(eid, q∗) and Auth-S(eid, q∗), S first computes V for peer q∗ using u

and ρeid and then simulates the protocols using such V . As long as A does not corrupt peer q∗, all
oracles can be simulated correctly throughout the game.

And with non-negligible probability, A eventually has won in the game. Let tag1 and tag2

be the two linked tags associated with queries Q1 and Q2 respectively. With probability at least
1/q, Q1 involves peer q∗. S can rewind A to extract from it the knowledge of (A∗, x∗, y∗) that
constitutes to tag2. Since tag2 is linked to tag1, (A∗, x∗, y∗, ·) must be a valid credential of peer
q∗. With this information, S can compute logg u and solve the DL problem instance. ut

32

	Introduction
	Balancing User Privacy and Accountability
	The Challenge: P2P Systems
	Our Contributions

	Related Works
	Our Approach
	Putting Authentication Schemes into ``Linkability Context''
	Key Ideas in Our PPAA Design

	Preliminaries
	Model
	System Operations
	Security Requirements

	Our Solution
	Our First Attempt
	Our PPAA Construction
	SPK Instantiation
	Analysis

	Discussion
	Conclusion
	Formal Security Definitions
	Mis-authentication Resistance and Peer Accountability
	Peer Privacy
	Framing Resistance

	Implementation
	Software Prototyping
	Empirical Performance Results

	SPK Instantiation
	SPK0
	SPK1
	SPK2
	SPK3
	SPK4
	Computational Costs

	Proof Sketches
	Peer Accountability
	Peer Privacy
	Framing Resistance

