
 

A Virtual Time System for OpenVZ-Based 

Network Emulations 
Yuhao Zheng 

Department of Computer Science 

University of Illinois at Urbana-Champaign 

Urbana, Illinois, USA 

zheng7@illinois.edu 

  

David M. Nicol 

Department of Electrical and Computer Engineering 

University of Illinois at Urbana-Champaign 

Urbana, Illinois, USA 

dmnicol@illinois.edu

Abstract—Simulation and emulation are commonly used to study 
the behavior of communication networks, owing to the cost and 
complexity of exploring new ideas on actual networks. Emula-
tions executing real code have high functional fidelity, but may 
not have high temporal fidelity because virtual machines usually 
use their host’s clock. A host serializes the execution of multiple 
virtual machines, and time-stamps on their interactions reflect 
this serialization. In this paper we improve temporal fidelity of 
the OS level virtualization system OpenVZ by giving each virtual 
machine its own virtual clock. The key idea is to slightly modify 
the OpenVZ and OpenVZ schedulers so as to measure the time 
used by virtual machines in computation (as the basis for virtual 
execution time) and have Linux return virtual times to virtual 
machines, but ordinary wall clock time to other processes. Our 
system simulates the functional and temporal behavior of the 
communication network between emulated processes, and con-
trols advancement of virtual time throughout the system. We 
evaluate our system against a baseline of actual wireless network 
measurements, and observe high temporal accuracy. Moreover, 
we show that the implementation overhead of our system is as 
low as 3%. Our results show that it is possible to have a network 
simulator driven by real workloads that gives its emulated hosts 
temporal accuracy. 
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I. INTRODUCTION 

The research community has developed many techniques 
for studying diverse communication networks. Evaluation 
based on any methodology other than actual measurements on 
actual networks raises questions of fidelity, owing to neces-
sarily simplifications in representing behavior. An effective 
way to accurately model the behavior of software is to actual-
ly run the software [1][5][9][10], by virtualizing the compu-
ting platform, partitioning physical resources into different 
Virtual Environments (VEs), on which we can run unmodified 
application code [19][22]. However, such emulations typically 
virtualize execution but not time. The software managing VEs 
takes its notion of time from the host system’s clock, which 
means that time-stamped actions taken by virtual environ-
ments whose execution is multi-tasked on a host reflect the 
host’s serialization. This is deleterious from the point of view 
of presenting traffic to a network simulator which operates in 
virtual time. Ideally each VE would have its own virtual clock, 
so that time-stamped accesses to the network would appear to 
be concurrent rather than serialized.  

In this paper, we present a virtual time system that gives 

virtualized applications running under OpenVZ [24] the tem-
poral appearance of running concurrently on different physical 
machines. This idea is not completely unique, related ap-
proaches have been developed for the Xen [11][12] system.  
Xen and OpenVZ are very different, and so are the approaches 
for virtualizing time. Xen is a heavy-weight system whose 
VEs contain both operating system and application. Corre-
spondingly Xen can simultaneously manage VEs running dif-
ferent operating systems. By contrast, all VEs under OpenVZ 
(called “containers” in OpenVZ parlance) use and share the 
host operating system. In Xen virtualization starts at the oper-
ating system whereas in OpenVZ virtualization starts at the 
application. There are tradeoffs of course, we are interested in 
OpenVZ because it scales better than Xen, as OpenVZ emula-
tion can easily manage many more VEs than can Xen. We 
believe we are first to introduce virtual time to OpenVZ; by 
doing so we are able to construct large scale models that run 
real application code, with rather more temporal accuracy 
than would be enjoyed without our modifications. 

We implement our virtual time system by slightly modi-
fying the OpenVZ and Linux kernels. The OpenVZ modifica-
tions measure the time spent in bursts of execution, stop a 
container on any action that touches the network, and gives 
one container (the network emulator) control over the sched-
uling of all the other containers to ensure proper ordering of 
events in virtual time. Modifications to the Linux kernel are 
needed to trap interactions by containers with system calls 
related to time, e.g., if a container calls gettimeofday(), the 
system should return the container’s virtual time rather than 
the kernel’s wall clock time – but calls by processes other than 
OpenVZ’s ought to see the kernel’s unmodified clock time.  

Our time virtualization is not exact. However, comparison 
with experiments that use real time-stamped data measured on 
a wireless network reveal temporal errors on the order of 1ms 
– which is not large for this application. We also measure the 
overhead of our system’s instrumentation and find it to be as 
low as 3%. In addition, our method is more efficient than the 
time virtualization proposed for Xen [11]. That technique 
simply scales real time by a constant factor, and gives each 
VM a constant sized slice of virtualized time, regardless of 
whether any application activity is happening. Necessarily, 
Xen VEs virtualized in time this way can only advance more 
slowly in virtual time than the real-time clock advances. Our 
approach is less tied to real time, and in principle can actually 



 

advance in virtual time faster than the real-time clock, de-
pending on the number of containers and their applications.  

The rest of this paper is organized as follow. Section II 
reviews related work. Sections III explain our system archi-
tecture at a high level, while Section IV provides detailed im-
plementations. Section V evaluates our systems and gives our 
experimental results. Section VI concludes the whole paper 
and identifies future work.  

II. RELATED WORK 

Related work falls into the following three categories: 1) 
network simulation and emulation, 2) virtualization technique 
and 3) virtual time systems. They are discussed one by one as 
follows. 

A. Network simulation and emulation 

Network simulation and network emulation are two 
common techniques to validate new or existing networking 
designs. Simulation tools, such as ns-2 [3], ns-3 [4], J-Sim [5], 
and OPNET [6] typically run on one or more computers, and 
abstract the system and protocols into simulation models in 
order to predict user-concerned performance metrics. As net-
work simulation does not involve real devices and live net-
works, it generally cannot capture device or hardware related 
characteristics. 

In contrast, network emulations such as PlanetLab [8], 
ModelNet [9], and Emulab [10] either involve dedicated 
testbed or connection to real networks. Emulation promises a 
more realistic alternative to simulation, but is limited by 
hardware capacity, as these emulations need to run in real time, 
because the network runs in real time. Some systems combine 
or support both simulation and emulation, such as CORE [1], 
ns-2 [3], J-Sim [5], and ns-3 [4]. Our system is most similar to 
CORE (which also uses OpenVZ), as both of them run un-
modified code and emulate the network protocol stack 
through virtualization, and simulate the links that connect 
them together. However, CORE has no notion of virtual time. 

B. Virtualization technique 

Virtualization divides the resources of a computer into 
multiple separated Virtual Environments (VEs). Virtualization 
has become increasingly popular as computing hardware is 
now capable enough of driving multiple VEs concurrently, 
while providing acceptable performance to each. There are 
different levels of virtualization: 1) virtual machines such as 
VMware [20] and QEMU [21], 2) paravirtualization such as 
Xen [22] and UML [23], and 3) Operating System (OS) level 
virtualization such as OpenVZ [24] and Virtuozzo [25]. Virtu-
al machine offers the greatest flexibility, but with the highest 
level of overhead, as it virtualizes hardware, e.g., disks. Para-
virtualization is faster as it does not virtualize hardware, but 
every VE has its own full blown operating system. OS level 
virtualization is the lightest weight technique among these 
[18], utilizing the same operating system kernel (and kernel 
state) for every VE. The problem domain we are building this 
system to support involves numerous lightweight applications, 
and so our focus is on the most scalable of these approaches. 
The potential for lightweight virtualization was demonstrated 

by Sandia National Lab who demonstrated a one million VM 
run on the Thunderbird Cluster, with 250 VMs each physical 
server [2]. While the virtualization techniques used are similar 
to those of the OpenVZ system we have modified, the Sandia 
system has neither a network simulator between communi-
cating VMs, nor a virtual time mechanism such as we pro-
pose. 

C. Virtual time system 

Recent efforts have been made to improve temporal ac-
curacy using Xen paravirtualization. DieCast [11], VAN [12] 
and SVEET [13] modify the Xen hypervisor to translate real 
time into a slowed down virtual time, running at a slower but 
constant rate, and they call such mechanism time dilation. At a 
sufficiently coarse time-scale this makes it appear as though 
VEs are running concurrently. Other Xen-based implementa-
tions like Time Jails [14] enable dynamic hardware allocation 
in order to achieve higher utilization. Our approach also tries 
to maximize hardware utilization and keep emulation runtime 
short. Unlike the mechanism of time dilation, we try to ad-
vance virtual clock as fast as possible, regardless it is faster or 
slower than real time. 

Our approach also bears similarity to that of the LAPSE 
[17] system. LAPSE simulated the behavior of a mes-
sage-passing code running on a large number of parallel pro-
cessors, by using fewer physical processors to run the applica-
tion nodes and simulate the network. In LAPSE, application 
code is directly executed on the processors, measuring execu-
tion time by means of instrumented assembly code that 
counted the number of instructions executed; application calls 
to message-passing routines are trapped and simulated by the 
simulator process. The simulator process provides virtual time 
to the processors such that the application perceives time as if 
it were running on a larger number of processors. Key differ-
ences between our system and LAPSE are that we are able to 
measure execution time directly, and provide a framework for 
simulating any communication network of interest (LAPSE 
simulates only the switching network of the Intel Paragon).  

III. SYSTEM ARCHITECTURE 

We begin by providing an introduction of OpenVZ sys-
tem, and then explain the architecture of our system. 

A. Overview of OpenVZ 

OpenVZ provides container-based virtualization for 
Linux [24]. It enables multiple isolated execution environ-
ments (called Virtual Environments, VEs, or containers) 
within a single OS kernel. It provides better performance and 
scalability as compared with other virtualization technologies. 
Figure 1 shows the architecture of OpenVZ. A virtual envi-
ronment looks like a separate physical machine. It has its own 
process tree starting from the init process, its own file sys-
tem, users and groups, network interfaces with IP addresses, 
etc. Multiple VEs coexist within a single physical machine, 
and they not only share the physical resources but also share 
the same OS kernel. All VEs have to use the same version of 
the same kernel. 

A VE is different from a real OS. A VE uses fewer re-



 

sources. For example, a newly created Ubuntu VE can have 
fewer than 10 processes. A VE has limited function compare 
with a real machine, e.g., it is prohibited from loading or un-
loading kernel modules inside a VE. Finally, the Linux host 
operating system provides all kernel services to every VE; the 
operating system is shared. 

OpenVZ offers two types of virtual network interfaces to 
the VEs, one called a virtual network device (or venet in 
OpenVZ parlance) and the other called a virtual Ethernet de-
vice (or veth in OpenVZ parlance) [24]. A virtual network 
device has lower overhead, but with limited functionality, 
serving simply as a point-to-point connection between a VE 
and the host OS. It does not have a MAC address, has no ARP 
protocol support, no bridge support, and no possibility to as-
sign an IP address inside the VE. By contrast, a virtual Ether-
net device has slightly higher (but still very low) overhead, 
but it behaves like an Ethernet device. A virtual Ethernet de-
vice consists of a pair of network devices in the Linux system, 
one inside the VE and one in the host OS. Such two devices 
are connected via Ethernet tunnel: a packet goes into one de-
vice will come out from the other side. 

The OpenVZ CPU scheduler has two levels. The first 
level scheduler determines which VE to give time slice to, 
according the VE’s CPU priority and limit settings. The se-
cond level scheduler is a standard Linux scheduler, which 
decides which process within a VE to run, according to the 
process priorities. 

 

Figure 1 Architecture of OpenVZ 

B. System designs 

The architecture of our OpenVZ-based emulation system 
is illustrated by Figure 2. For a given experiment a number of 
VEs are created, each of which represents a physical machine 
in the scenario being emulated. Applications that run natively 
on Linux run in VEs without any modification. The sequenc-
ing of applications run on different VEs is controlled by the 
Simulation/Control application, which runs on host OS (or 
VE0 in OpenVZ parlance). Sim/Control communicates to the 
OpenVZ layer to control VE execution so as to maintain tem-
poral fidelity. For instance, a VE that is blocked on a socket 
read ought to be released when data arrives on that socket.  

Sim/Control knows when the data arrives, and so knows when 
to signal OpenVZ that the blocked VE may run again. 

Under unmodified OpenVZ all VEs share the wallclock 
of the host computer (accessed through the shared host oper-
ating system). In our virtual time system, each VE has its own 
virtual clock (denoted as vclki in Figure 2), while the host OS 
still uses the wallclock (denoted as wclk). Different virtual 
clocks advance separately, but all of them are controlled by 
the network simulator via the virtual time kernel module (V/T 
module in the figure).  

Sim/Control captures packets sent by VEs and delivers 
them to destination VEs at the proper time (“proper time” 
being a function of what happens as the network is simulated 
to carry those packets). Sim/Control also controls the virtual 
times of VEs, advancing their virtual times as a function of 
their execution, but also blocking a VE from running, in order 
to prevent causal violation. For example, if a packet should 
arrive at a VE at virtual time t, but the virtual time of that VE 
is already t+1, a causal violation occurs because the applica-
tion has missed the packet and may behave differently than 
expected. Sim/Control is responsible for stopping this VE at 
virtual time t, until the packet arrives. This is accomplished by 
modifying the scheduler, as we will describe in Section IV. 

Sim/Control consists of two cooperating subsystems: 1) 
network subsystem (denoted as N/W in Figure 2) and 2) virtual 
time subsystem (denoted as V/T). For instance, when a packet 
sent by VE1 to VE2, it is captured by Sim/Control, which has 
to know the virtual sending timestamp of that packet in order 
to know when it entered the network. After the simulator de-
termines the virtual arrival time of the packet at VE2, the sim-
ulator must ensure that VE2 has advanced far enough in sim-
ulation time to receive that packet, or that VE2 is blocked 
waiting for a packet, and so needs to be released to run. 

 

Figure 2 Architecture of network emulation with virtual time 

C. Sim/Control 

The Sim/Control process captures VE packets, simulates 
their travel within the imagined network, and delivers them to 
their destinations. Packet capture is accomplished using the 
OpenVZ virtual Ethernet device (veth). When an application 
within a VE sends a packet via its veth interface, the packet 
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appears at veth in the host OS due to the virtual Ethernet 
tunneling. Sim/Control monitors all veth interfaces to capture 
all packets sent by all VEs. Similarly, when it wants to deliver 
a packet to a VE, it just simply sends the packet to the corre-
sponding veth interface. The packet tunnels to the VE’s cor-
responding veth interface, where the application receives it. 
The packet travel route is shown in Figure 3. 

 

Figure 3 Packet traverse route in emulation 

Sim/Control needs to cooperate with the virtual time 
subsystem when VEs are either sending packets or receiving 
packets. For example, in real system, blocking socket sends 
(e.g., sendto()) are returned after the packets have been tak-
en care of the underlying OS. Correspondingly, in emulation, 
the process should perceive comparable amount of elapsed 
time after the call returns. This is done by trapping those sys-
tem calls, suspending the VE, have Sim/Control figure out the 
time at which the packet is taken care, and then return control 
to the VE, at the corresponding virtual time. Similarly, when 
an application is blocked waiting to receive a packet, it should 
be unblocked at the virtual time of the packet’s arrival. The 
comparison between real network operations and emulated 
ones is shown in Figure 4. As long as the processes perceive 
comparable elapsed time after system calls are returned and 
the network simulation gives high enough fidelity for the sys-
tem measures of interest, this approach is viable. Our ap-
proach to integrating the network simulation allows us to in-
clude any one of a number of physical layer models. Detailed 
technical issues are discussed in Section IV. 

 

Figure 4 Real network operations vs. simulated network operations 

D. Virtual time subsystem 

The responsibility of the virtual time subsystem includes 
advancing virtual clocks of VEs and controlling the execution 
of VEs. From the operating system’s point of view, a process 
can either have CPU resources and be running, or be blocked 
and waiting for I/O [30] (ignoring a “ready” state, which 

rarely exists when there are few processes and ample re-
sources). The wall clock continues to advance regardless of 
the process state. Correspondingly, in our system, the virtual 
time of a VE advances in two ways. At the point a VE be-
comes suspended, the elapsed wallclock time during its exe-
cution burst is added to the virtual clock. This is shown in 
Figure 5. 

The situation is different when the application within a 
VE interacts with the I/O system. Our modified OpenVZ ker-
nel traps the I/O calls, Sim/Control determines the I/O delay 
and adds that to the VE’s virtual clock, and then returns the 
I/O request to unblock the process. As shown in Figure 5, 
when I/O delay is accurately simulated, the virtual clock will 
have the same value as wall clock, and therefore the applica-
tion perceives the same elapsed time. However, the real 
elapsed time depends on the time spent on emulating such I/O, 
which depends on the model and the communication load.  

 

Figure 5 Wall clock time advancement vs. virtual time advancement 

It is sometimes necessary to block a running VE in order 
to prevent casual violation. An example is when an applica-
tion queries for incoming I/Os, e.g. a non-blocking socket call 
using select() [32]. Even though there may be no pending 
packets at that wallclock moment, it is possible still for a 
packet to be delivered with a virtual arrival time that is no 
greater than the virtual time t of the select() call, because 
the virtual clock the sending VE may be less than t. Therefore, 
when an application makes a non-blocking socket receive call 
at virtual time t, our system suspends it until we can ensure no 
packets can arrive with time-stamps less than or equal to t. On 
a blocking call we need to ensure that the right packet un-
blocks the VE, and so the same logic applies – before the VE 
is released at time t, we ensure that any packet with time 
stamp t or small has already been delivered. Implementation 
details are given in Section IV. 

IV. IMPLEMENTATION 

We next present implementation details of our virtual 
time system, and discuss some related issues. 

A. Implementation architecture 

As shown in Figure 2, virtual time management needs 
kernel support, therefore modification to OpenVZ kernel is 
necessary. We try to keep the modifications simple. The kernel 
implements only some primitive operations, while 
Sim/Control calls these operations to control sequencing of 
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VE execution. Sim/Control runs at user level on the host OS 
(VE0), and communicates with the kernel through new system 
calls we have implemented. We have chosen system calls to 
be the communication channel between user space and kernel 
because of its high efficiency. We placed Sim/Control in user 
space in order to keep the kernel safe, but the frequent com-
munication between user and kernel raises the question of 
overheads. Section V.E discusses our measurement of this, 
found in our experiments to be small. 

We first provide the kernel modifications in Subsection B, 
and then present the design of Sim/Control in Subsection III.C. 
Finally, we discuss the upper bound of error in Subsection D. 

B. Modifications to OpenVZ kernel 

OpenVZ scheduler. Scheduling VEs properly ensures 
the correctness of the emulation. To support this we modified 
the OpenVZ scheduler so that Sim/Control governs execution 
of the VEs. By making system calls to the kernel, Sim/Control 
explicitly gives time slices to certain VEs; a VE may run only 
through this mechanism.  

The typical scheduling sequence of emulation is shown in 
Figure 6, showing how Sim/Control and VEs take turns run-
ning. We refer Sim/Control time slice together with all the 
subsequent VE time slices before the next Sim/Control time 
slice as one emulation cycle. At the beginning of a cycle, all 
VEs are blocked. In its time slice Sim/Control pushes all due 
events to VEs (such as packet deliveries, details in Subsection 
III.C), and then decides which VEs can have time slices and 
notifies the kernel that they may run. Causal constraints may 
leave any given VE blocked, but Sim/Control will always 
advance far enough in virtual time so that at least one VE is 
scheduled to run in the emulation cycle. VE executions within 
an emulation cycle are logically independent of each other, 
and so their execution order does not matter.  

 

Figure 6 Scheduling of VEs and Sim/Control (example of 3 VEs) 

An executing VE is suspended when either it uses up the 
time slice or when it makes a system call that is trapped (typ-
ically one that interacts with the communication system). 
Such system calls includes network send and receive calls, as 
discussed in Section III.C. Once a VE makes such special 
calls, it is blocked immediately and cannot run any more 
within this emulation cycle. After a VE stops, the actual time 
it executed will be added to its virtual clock.  

This discussion summarizes Rule #1: A VE can run only 
after Sim/Control has released it, and will then suspend when 
either its time slice is consumed, or it executes a trapped sys-
tem call that interacts with the I/O subsystem. 

Trap network related system calls. We first discuss 
socket send calls, both blocking and non-blocking. As pointed 
out by Section III.C, blocking socket sends should be returned 

after a virtual time equivalent to the time required to transmit 
the packet. In unmodified OpenVZ, such system calls are re-
turned almost immediately, as the virtual Ethernet device han-
dles packets at an extremely high speed. However, the time 
elapsed in real systems depends on the underlying physical 
layer. It can be in the order of microseconds for some gigabit 
Ethernet [39], but can be as large as several milliseconds for 
some wireless networks. We modified OpenVZ to give 
Sim/Control the responsibility of returning those system calls. 
The VE is suspended at the point of the call, and its current 
virtual time is updated. Since the packet was presented to the 
virtual Ethernet interface it tunnels almost immediately to be 
reflected at its corresponding interface in Sim/Control. 
Therefore at the beginning of the next emulation cycle 
Sim/Control observes the packet and marks its send time as 
the virtual time of its suspended source. Once the packet de-
parture has been fully simulated (and this may take some 
number of emulation cycles, depending on the network model 
and the traffic load on the simulator), Sim/Control will know 
to release the suspended sender. We likewise suspend a VE 
that makes a non-blocking send, but just to obtain the packet’s 
send time. In this case Sim/Control immediately releases the 
sender to run again in the following emulation cycle. 

Now consider socket receive calls. As discussed in Sec-
tion III.D, an application that makes a socket receive call (ei-
ther blocking or not) is suspended before it looks at the re-
ceive buffer in order to ensure that the state of the receive 
buffer is correct for that virtual time. The VE must wait at 
least until the next cycle, at which point Sim/Control will ei-
ther release it to run, or not, depending on whether there is a 
threat of violating causality constraints. Once the VE is re-
leased to run again it looks at the receive buffer and responds 
to the previous socket receive call with normal semantics 
(possibly blocking again immediately, if it is a blocking re-
ceive that finds no packet in the buffer).  

This discussion summarizes Rule #2: a VE is always 
suspended upon making a network related system call. 

Other kernel modifications. Other kernel modifications 
are also necessary. This includes trapping gettimeofday() 
system calls and returning virtual times to the application, and 
basing kernel timers on virtual time. The implementations are 
entirely straightforward and need no further comment.  

C. VE Scheduling Control 

Sim/Control runs in user-space in the host OS. With the 
support of the kernel, it only needs to maintain a simple logic 
to control VE execution. The algorithm used is described in 
Algorithm 1, and it is a simple variation of a conservative 
parallel discrete event simulation (PDES) synchronization 
method [27][28]. Sim/Control maintains its own virtual clock 
current_time. Conceptually, in every time slice of an emula-
tion cycle, Sim/Control does the following one by one: (1) 
buffers packets sent by VEs during the last cycle (line 10-15), 
(2) simulates the network and pushes due events to VEs (line 
17-23), (3) decides which VEs can run in the next cycle (line 
25-31), (4) advances virtual clocks if no VEs can run (line 
33-38), and finally (5) yields the processor to let VEs run (line 
41-42). In step (3), an event is considered “due” if its virtual 
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time is no greater than the virtual time of the VE to which it is 
pushed. We will comment more on this in our section on error 
analysis. 

As shown in Algorithm 1, the Sim/Control calls the net-
work simulator program nw_sim to simulate the network (line 
17 & 35); this function call needs some explanation. The first 
parameter is the current status of the network (stored in the VE 
data structure), a status that changes as the simulation exe-
cutes. The second and third parameters indicate the desired 
start time and end time of simulation. The fourth parameter is 
a flag, explained later. The outcomes of nw_sim are the events 
to be returned to VEs (both finished transmissions and packet 
receptions) within the desired time interval, and they are 
stored back into the network status VE. With this information, 
the Sim/Control knows which system calls to return and 
which packets to deliver within a single time slice (line 
20-21). 

Algorithm 1  Logic for Controlling VE Execution 

01   for each VE i do 

02     init_ve_status(VE[i]) 
03   end for 

04   current_time ← 0 

05    
06   while true do 

07     wait_until_all_ves_stop() 

08     last_time ← current_time 
09     current_time ← mini(VE[i].time) 

10     for each VE i do 

11       for each packet p sent by VE[i] do 
12         p.send_time ← VE[i].time 

13         buffer_packet(VE[i], p) 

14       end for  
15     end for 

16    

17     nw_sim(VE, last_time, current_time, false) 
18     while true do 

19       for each VE i do 

20         return_due_send_calls(VE[i]) 
21         deliver_due_packets(VE[i]) 

22         fire_due_timers(VE[i]) 

23       end for 
24    

25       for each VE i do 

26         VE[i].can_run ← VE[i].ready and  
27             VE[i].time < current_time + δ 

28       end for  

29       if at least one VE can run then 
30         break 

31       end if 

32    
33       next_time ← minj(virtual_timers[j].exp) 

34       current_time ← 

35           nw_sim(VE, current_time, next_time, true) 
36       for each VE i do 

37         VE[i].time ← max(VE[i].time, current_time) 

38       end for  
39     end while 

40    

41     release_VEs() 
42     sched_yield() 

43   end while 

 

The fourth parameter of nw_sim interface is a flag which 
tells the simulator whether to stop when such return event first 
occurs. When the flag of nw_sim is set to false, network is 
simulated for the given time interval (e.g. line 17) and returns 
the virtual end-time of its execution period. When the flag is 
set to true, the network simulator finds the exact time of the 
next return event (e.g. line 35), stops and returns that time. 
When the emulator detects that no VEs can run, it advances its 
current virtual clock to the point when next event happens. 
Such event can be either a packet transmission or a kernel 
timer expiration, whichever happens first (line 33-35). 

Finally, there is a tunable parameter δ in line 27 used to 
control how tightly virtual clocks of different VE are synchro-
nized. In the following section we show how an application 
running multiple threads in a VE can have different behavior 
in our system that it does in a real system. The smaller δ is, 
the smaller the potential error of that difference can be. Our 
experiments use a value of 1msec, which is the minimum pos-
sible value in our current platform. 

D. Error Analysis 

According to Algorithm 1, an event is delivered to a VE 
no earlier than it should be, in the sense that if an event time 
is t, the VE notices it at a time u that is at least as large as t.  
Since we suspend a VE at all points where it interacts with the 
network, if the VE is single-threaded it will be insensitive to 
the difference between t and u because its behavior is not af-
fected by the arrival at t. This is not the case however if an 
application is multi-threaded, as we show below. 

Consider an application which consists of two threads. 
Thread A does CPU intensive computation, while Thread B 
repeatedly receives packets using blocking socket call 
recvfrom(), and calls gettimeofday() immediately after it 
receives a packet. In a Linux system, when there is an incom-
ing packet, Thread B will be immediately be run, pre-empting 
Thread A. As a result, this application can get the exact time 
of packet arrival. This is illustrated in Figure 7. 

 

Figure 7 Error in virtual time of packet delivery 
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Now consider the same application running on our virtual 
time system. Whenever Thread B makes the socket receive 
call, the whole application – both threads – is blocked by Rule 
#2. After Sim/Control releases the application to run again, 
Thread A will take off. However, once the application gets the 
CPU, it uses the entire time slice because Thread A keeps do-
ing computation. Meanwhile Sim/Control is waiting its turn 
and so packets are not delivered to wake up Thread B until 
that turn comes around, after the actual delivery time. In this 
case, the error in that delivery time can be as most as large the 
time slice the application is given to. The comparison is 
shown in Figure 7. 

We summarize the above case as an instance of an inter-
rupt-like event. The key problem are situations where in the 
real system a process is interrupted immediately, whereas in 
the emulation the interrupting event is not recognized until 
Sim/Control gets a time-slice. We can reduce this error by 
reducing the length of the time-slice, but this of course in-
creases the overhead by increasing context switching [30]. 
The tradeoff between behavioral accuracy and execution 
speed is a common tradeoff in simulation [29]. We leave ex-
ploring such tradeoff as future work. 

V. EVALUATION 

This section provides our experimental results that 
demonstrate the performance of our virtual time system.  

A. Experimental framework 

In order to validate the emulated results, we compare 
them with that we obtained in [36] within the Illinois Wireless 
Wind Tunnel (iWWT). The iWWT [35] is built to minimize 
the impact of environment in wireless experiments. It is an 
electromagnetic anechoic chamber whose shielding prevents 
external radio sources from entering the chamber; and whose 
inner wall is lined with electromagnetically absorbing materi-
als, which reflect minimal energy. This gives us a simulated 
“free space” inside the chamber, which is ideal for conducting 
wireless network experiments. 

We run the same application as we used in [36] within 
our emulator. We notice the hardware difference between the 
machine on which we run our emulator, and the devices we 
used to collected data inside the chamber. Specifically, our 
emulator is running on a Lenovo T60 laptop with Intel T7200 
CPU and 2GB RAM (if not otherwise specified), while we 
used Soekris Engineering net4521 [37] with mini-PCI wire-
less adapters plugged in as wireless nodes inside the iWWT. 
Due to the difference in processors, applications running on 
the Soekris box should observe longer elapsed times than the 
Lenovo laptop. However, this should not bring large error into 
the results, as the applications we run are I/O bound ones, i.e. 
the time spend on I/O is dominant while the time spend on 
CPU is negligible. 

In the experiment inside the chamber, the wireless nodes 
were operating on 802.11a [38]. Correspondingly, we have an 
802.11a physical layer model in our Sim/Control, which pre-
dicts packet losses and delay. Our 802.11a model implements 
CSMA/CA, and it uses bit-error-rate model to stochastically 

sample lost packets.  

B. Validating bandwidth, delay and jitter – one-link scenario 

We start with the simplest scenario with two wireless 
nodes and one wireless link. Packets are sent to the receiver as 
fast as possible using 54Mbps data rate under 802.11a, and the 
receiver records the timestamp of each received packet. The 
comparison between real trace and emulated results is shown 
in Figure 8 and Figure 9. We study the delay rather than 
throughput because the sender is sending packets of constant 
size, and therefore accurate delay implies accurate throughput, 
but not vice versa. The experiment actually persists for 10sec 
in real time, but we only show 20 packets for conciseness. 

As shown in Figure 8, the emulated result (the 1-flow line) 
under our virtual time system is almost identical to the real 
trace, with the error within 1msec. The only difference is due 
to random retransmissions, which are caused by low SINR. In 
802.11a, when the receiver cannot correctly decode the data 
frame, it will not send an ACK frame. In this case, the sender 
will have to retransmit that data frame, and this will approxi-
mately double the transmission time of this single packet 
compare with no retransmission. From the figure, we are able 
to tell when a retransmission happens by examining in-
ter-packet arrival time. As retransmission is a random event, it 
is reasonable that our 802.11a model cannot predict retrans-
mission for the exact packet as real trace. In general, the mod-
el predicts comparable retransmission rate. 

 

Figure 8 Packet arrival time, one link scenario, with virtual time 

 

Figure 9 Packet arrival time, one link scenario, without virtual time 

To demonstrate the accuracy of our system under differ-
ent loads, the previous one-link scenario is replicated several 
times, with each replication emulated simultaneously. How-
ever, replicated links are only used to saturate the emulator, so 

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ac

ke
t 

A
rr

iv
al

 T
im

e
 (

m
se

c)
 

Packet # 

Real trace

Virtual time - 1 flow / 2VEs

Virtual time - 5 flows / 10VEs

Virtual time - 10 flows / 20VEs

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ac

ke
t 

A
rr

iv
al

 T
im

e
 (

m
se

c)
 

Packet # 

Real trace

No virtual time - 1 flow / 2VEs

No virtual time - 5 flows / 10VEs

No virtual time - 10 flows / 20VEs



 

they are independent and will not interfere with each other. 
This represents the scenario in which we have multiple 
non-interfering wireless links; each flow has the same behav-
ior as a single flow (modulo differences in random number 
seeds.) In Figure 8, the 5-flow line and the 10-flow line show 
the results of a single flow out of the 5 or 10 simultaneous 
ones. Regardless of the number of flows, the behavior of each 
flow is identical to 1-flow case, as expected. 

For comparison, we run the same experiment under the 
system without virtual time, and the results are shown in Fig-
ure 9. The 1-flow result is has only slightly larger error than 
that with virtual time, being caused by scheduling delay. This 
occurs when a VE cannot get the CPU and execute exactly on 
time, including (1) when the network emulator should deliver 
a packet to destination VE, and (2) when the destination VE 
should process an incoming packet. In fact, such scheduling 
delay also exists in virtual time implementation, but VEs will 
not perceive delay because their virtual clocks do not advance 
meanwhile. The error of not having virtual time here is as 
small as 1msec, but it will scale up when the number of VEs 
increases, as more VEs may introduce longer delay. As shown 
by the 5-flow line in Figure 9, the error can be as large as sev-
eral milliseconds. Worse still, when the offer load is too high 
(e.g. the 10-flow line) for the emulator to process in real time, 
the error accumulates and becomes larger and larger. This is 
occurs because the emulator cannot run fast enough to catch 
up with real time. 

C. Validating bandwidth, delay and jitter – two-link scenario 

We next validate the scenario with four wireless nodes 
and two conflicting wireless links. Space limitations inside the 
iWWT prohibit study of more complex scenarios. Figure 10 
shows the experimental setup. Although we only have four 
wireless nodes, we have six different combinations by chang-
ing source/destination pair and data rates. For example, Sce-
nario 3 and Scenario 4 are those of heterogeneous data rate. 

We use the iperf link test application [34] to test both 
links, and we are interested in both bandwidth and jitter (delay 
variation). We configure the emulator to simulate the above 
scenario. However, by examining the real data, we found that 
the link with Node 2 as sender usually has a higher throughput, 
regardless of its receiver. We conclude this is due to the hard-
ware, although the four wireless adapters are of the same 
manufacture and same model. We capture such hardware 
characteristic by increasing the antenna gain of Node 2 in our 
network simulator. Higher antenna gain results in higher 
SINR, lower bit error rate (BER), lower retransmission rate, 
and finally higher throughput. 

The results are shown in Figure 11 and Figure 12. The 
former shows comparison of throughput and the latter shows 
that of jitter. We observe a very accurate emulated throughput, 
with error less than 3% in most cases. On the other hand, the 
jitter obtained from emulated platform has a larger error, 
which is within 10% in most cases but which sometimes is as 
large as 20%. By comparing timestamps generated by the 
simulator and that perceived by the application, we found 
such error is due to the inaccuracy of the 802.11a model, not 
the virtual time system itself. As discussed before, accurate 

delay implies accurate throughput but not vice versa. The re-
sults here demonstrate that jitter is more difficult to model 
than throughput. 

 

Scenario 

ID 

Link 1 Link 2 

src→dst data rate src→dst data rate 

1 2→1 6Mbps 3→4 6Mbps 

2 2→4 6Mbps 3→1 6Mbps 

3 2→1 54Mbps 3→4 6Mbps 

4 2→4 54Mbps 3→1 6Mbps 

5 2→1 54Mbps 3→4 54Mbps 

6 2→4 54Mbps 3→1 54Mbps 

Figure 10 Two-link experiment setup inside the iWWT 

 

Figure 11 Two-link scenarios – throughput  

 

Figure 12 Two-link scenarios – jitter  
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D. Emulation runtime and scalability 

We tested the execution speed of our system, by modify-
ing the number of simultaneous network flows. We reuse the 
previous one-link scenario, in which the sender transmits 
packets to the receiver for 10sec using 54Mbps data rate. As 
in Subsection B, we replicate this link by several times, but 
only in order to saturate the emulator. 

The emulation runtime under different loads is shown in 
Figure 13. When there is only one link, the runtime is only 
less than 2sec in real time. Compared with 10sec elapsed in 
virtual time, emulation runs faster because in this case the 
emulated I/O is faster than real I/O. As the number of flows 
increases, the runtime increases linearly as well. When there 
are more than 7 flows, the emulation runs slower than real 
time because of large volume of traffic. In addition, we plot 
the CPU usage percentage, and we find that our system can 
achieve high CPU usage when there is enough load. It cannot 
achieve 100% CPU usage because our Lenovo laptop is using 
dual-core CPU. As explained in Section IV.C, before the em-
ulator process starts its time slice, it will wait until all VEs 
stop running. Different VEs can run on different CPUs simul-
taneously, but the emulator process runs on only one CPU, 
and meanwhile the other CPU is idle. As shown in Figure 13, 
increased number of flows results in higher CPU utilization. 
This is because as the number of flows increases and so does 
the number of VEs, the fraction of time during which the 
CPUs are saturated by VE execution also increases. 

To demonstrate the scalability of our system, we tested 
our system on a Dell PowerEdge 2900 server with dual Intel 
Xeon E5405 and 16GB RAM. We rerun the above scenario 
but with 160 flows and 320 VEs, which finishes in 307sec 
(compared with < 2 sec. for 1 flow). Our current system can 
only run on a single machine, but with its distributed version 
as a future work, we will be able to emulate more network 
nodes. Nevertheless, we found that implementation with 
OpenVZ yields high VE density (320 VEs per physical ma-
chine), thanks to the light weight of OpenVZ. 

 

Figure 13 Emulation runtime  

E. Implementation overhead 

We are concerned about the implementation overhead of 
our system, and we measure it in the following way. We 
slightly modify the user-level emulator application, making it 

run in real time instead of virtual time so that it can run on 
original Linux platform. When running on original Linux, we 
use the snull virtual Ethernet tunnel module [33] to replace 
the virtual Ethernet devices created OpenVZ, so that both ip-
erf and the emulator can be configured in the same way.  

We reuse the scenario of the previous subsection, but we 
only use 5 flows so that our Lenovo laptop is capable to run in 
real time. When running in real time, either on original Linux 
or on original OpenVZ, the runtime of emulation is exactly 
10sec. Instead of using the elapsed time of wallclock, we use 
the total CPU time for comparison. For instant, if the average 
CPU utilization is 60% during the 10-second period, the total 
CPU time is 6sec. 

  Original 

Linux 

Original 

OpenVZ 

Virtual time 

system   

Total CPU time 6.345 sec 6.478 sec 6.654 sec 

Time in % 100.0% 102.1% 104.9% 

Figure 14 Implementation overhead 

The comparison among Linux, OpenVZ, and our virtual 
time system is shown in Figure 14. For the scenario we con-
sider, we obverse 2% overhead of OpenVZ compared with 
original Linux. This matches the claim on OpenVZ project 
website, which says OS-level virtualization only has 1%-3% 
overhead [24]. In addition, we observe another 3% overhead 
of implementing virtual time, based on the original OpenVZ 
system. We find that such overhead is due to both frequent 
system calls and context switches. Implementing the emulator 
in kernel space might help on reducing such overhead, but we 
prefer to keep the kernel safe and simple. The observed 3% 
overhead is low, and considering the performance of OS-level 
virtualization, we conclude that our system is highly scalable. 

Finally, we notice that such implementation overhead on 
OpenVZ is competitively low compared with other virtualiza-
tion techniques. For instance, QEMU without a kernel accel-
eration module is 2X to 4X slower [21]. We are currently de-
veloping a virtual time system for QEMU as well, in order to 
support time virtualization to applications running on a larger 
number of operating systems. 

VI. CONCLUSIONS AND FUTURE WORK 

We have implemented a virtual time system which allows 
unmodified application to run on different virtual environ-
ments (VEs). Although multiple VEs coexist on a single 
physical machine, they perceive virtual time as if they were 
running independently and concurrently. Unlike previous 
work based on Xen paravirtualization, our implementation is 
based on OpenVZ OS-level virtualization, which offers better 
performance and scalability (at the price of less flexibility). In 
addition, our system can achieve high utilization of physical 
resources, making emulation runtime as short as possible. Our 
implementation has only 3% overhead compared with 
OpenVZ, and 5% compared with native Linux. This indicates 
that our system is efficient and scalable. 

Through evaluation, we found the accuracy of virtual 
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time can be within 1msec, at least if an accurate network sim-
ulator is used. It is indeed the model that introduces the error, 
rather than the virtual time system itself. While our system 
can currently simulate limited type of hardware, future work 
can model more hardware configuration, e.g. multicore CPU, 
other I/O devices such as disk. It is also worth exploring the 
tradeoff between behavioral accuracy and execution speed in 
the domain of emulation using unmodified compiled code.  
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