

A Virtual Time System for OpenVZ-Based

Network Emulations
Yuhao Zheng

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, Illinois, USA

zheng7@illinois.edu

David M. Nicol

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Urbana, Illinois, USA

dmnicol@illinois.edu

Abstract—Simulation and emulation are commonly used to study
the behavior of communication networks, owing to the cost and
complexity of exploring new ideas on actual networks. Emula-
tions executing real code have high functional fidelity, but may
not have high temporal fidelity because virtual machines usually
use their host’s clock. A host serializes the execution of multiple
virtual machines, and time-stamps on their interactions reflect
this serialization. In this paper we improve temporal fidelity of
the OS level virtualization system OpenVZ by giving each virtual
machine its own virtual clock. The key idea is to slightly modify
the OpenVZ and OpenVZ schedulers so as to measure the time
used by virtual machines in computation (as the basis for virtual
execution time) and have Linux return virtual times to virtual
machines, but ordinary wall clock time to other processes. Our
system simulates the functional and temporal behavior of the
communication network between emulated processes, and con-
trols advancement of virtual time throughout the system. We
evaluate our system against a baseline of actual wireless network
measurements, and observe high temporal accuracy. Moreover,
we show that the implementation overhead of our system is as
low as 3%. Our results show that it is possible to have a network
simulator driven by real workloads that gives its emulated hosts
temporal accuracy.

Keywords—network emulation, virtual time, virtual machines

I. INTRODUCTION

The research community has developed many techniques
for studying diverse communication networks. Evaluation
based on any methodology other than actual measurements on
actual networks raises questions of fidelity, owing to neces-
sarily simplifications in representing behavior. An effective
way to accurately model the behavior of software is to actual-
ly run the software [1][5][9][10], by virtualizing the compu-
ting platform, partitioning physical resources into different
Virtual Environments (VEs), on which we can run unmodified
application code [19][22]. However, such emulations typically
virtualize execution but not time. The software managing VEs
takes its notion of time from the host system’s clock, which
means that time-stamped actions taken by virtual environ-
ments whose execution is multi-tasked on a host reflect the
host’s serialization. This is deleterious from the point of view
of presenting traffic to a network simulator which operates in
virtual time. Ideally each VE would have its own virtual clock,
so that time-stamped accesses to the network would appear to
be concurrent rather than serialized.

In this paper, we present a virtual time system that gives

virtualized applications running under OpenVZ [24] the tem-
poral appearance of running concurrently on different physical
machines. This idea is not completely unique, related ap-
proaches have been developed for the Xen [11][12] system.
Xen and OpenVZ are very different, and so are the approaches
for virtualizing time. Xen is a heavy-weight system whose
VEs contain both operating system and application. Corre-
spondingly Xen can simultaneously manage VEs running dif-
ferent operating systems. By contrast, all VEs under OpenVZ
(called “containers” in OpenVZ parlance) use and share the
host operating system. In Xen virtualization starts at the oper-
ating system whereas in OpenVZ virtualization starts at the
application. There are tradeoffs of course, we are interested in
OpenVZ because it scales better than Xen, as OpenVZ emula-
tion can easily manage many more VEs than can Xen. We
believe we are first to introduce virtual time to OpenVZ; by
doing so we are able to construct large scale models that run
real application code, with rather more temporal accuracy
than would be enjoyed without our modifications.

We implement our virtual time system by slightly modi-
fying the OpenVZ and Linux kernels. The OpenVZ modifica-
tions measure the time spent in bursts of execution, stop a
container on any action that touches the network, and gives
one container (the network emulator) control over the sched-
uling of all the other containers to ensure proper ordering of
events in virtual time. Modifications to the Linux kernel are
needed to trap interactions by containers with system calls
related to time, e.g., if a container calls gettimeofday(), the
system should return the container’s virtual time rather than
the kernel’s wall clock time – but calls by processes other than
OpenVZ’s ought to see the kernel’s unmodified clock time.

Our time virtualization is not exact. However, comparison
with experiments that use real time-stamped data measured on
a wireless network reveal temporal errors on the order of 1ms
– which is not large for this application. We also measure the
overhead of our system’s instrumentation and find it to be as
low as 3%. In addition, our method is more efficient than the
time virtualization proposed for Xen [11]. That technique
simply scales real time by a constant factor, and gives each
VM a constant sized slice of virtualized time, regardless of
whether any application activity is happening. Necessarily,
Xen VEs virtualized in time this way can only advance more
slowly in virtual time than the real-time clock advances. Our
approach is less tied to real time, and in principle can actually

advance in virtual time faster than the real-time clock, de-
pending on the number of containers and their applications.

The rest of this paper is organized as follow. Section II
reviews related work. Sections III explain our system archi-
tecture at a high level, while Section IV provides detailed im-
plementations. Section V evaluates our systems and gives our
experimental results. Section VI concludes the whole paper
and identifies future work.

II. RELATED WORK

Related work falls into the following three categories: 1)
network simulation and emulation, 2) virtualization technique
and 3) virtual time systems. They are discussed one by one as
follows.

A. Network simulation and emulation

Network simulation and network emulation are two
common techniques to validate new or existing networking
designs. Simulation tools, such as ns-2 [3], ns-3 [4], J-Sim [5],
and OPNET [6] typically run on one or more computers, and
abstract the system and protocols into simulation models in
order to predict user-concerned performance metrics. As net-
work simulation does not involve real devices and live net-
works, it generally cannot capture device or hardware related
characteristics.

In contrast, network emulations such as PlanetLab [8],
ModelNet [9], and Emulab [10] either involve dedicated
testbed or connection to real networks. Emulation promises a
more realistic alternative to simulation, but is limited by
hardware capacity, as these emulations need to run in real time,
because the network runs in real time. Some systems combine
or support both simulation and emulation, such as CORE [1],
ns-2 [3], J-Sim [5], and ns-3 [4]. Our system is most similar to
CORE (which also uses OpenVZ), as both of them run un-
modified code and emulate the network protocol stack
through virtualization, and simulate the links that connect
them together. However, CORE has no notion of virtual time.

B. Virtualization technique

Virtualization divides the resources of a computer into
multiple separated Virtual Environments (VEs). Virtualization
has become increasingly popular as computing hardware is
now capable enough of driving multiple VEs concurrently,
while providing acceptable performance to each. There are
different levels of virtualization: 1) virtual machines such as
VMware [20] and QEMU [21], 2) paravirtualization such as
Xen [22] and UML [23], and 3) Operating System (OS) level
virtualization such as OpenVZ [24] and Virtuozzo [25]. Virtu-
al machine offers the greatest flexibility, but with the highest
level of overhead, as it virtualizes hardware, e.g., disks. Para-
virtualization is faster as it does not virtualize hardware, but
every VE has its own full blown operating system. OS level
virtualization is the lightest weight technique among these
[18], utilizing the same operating system kernel (and kernel
state) for every VE. The problem domain we are building this
system to support involves numerous lightweight applications,
and so our focus is on the most scalable of these approaches.
The potential for lightweight virtualization was demonstrated

by Sandia National Lab who demonstrated a one million VM
run on the Thunderbird Cluster, with 250 VMs each physical
server [2]. While the virtualization techniques used are similar
to those of the OpenVZ system we have modified, the Sandia
system has neither a network simulator between communi-
cating VMs, nor a virtual time mechanism such as we pro-
pose.

C. Virtual time system

Recent efforts have been made to improve temporal ac-
curacy using Xen paravirtualization. DieCast [11], VAN [12]
and SVEET [13] modify the Xen hypervisor to translate real
time into a slowed down virtual time, running at a slower but
constant rate, and they call such mechanism time dilation. At a
sufficiently coarse time-scale this makes it appear as though
VEs are running concurrently. Other Xen-based implementa-
tions like Time Jails [14] enable dynamic hardware allocation
in order to achieve higher utilization. Our approach also tries
to maximize hardware utilization and keep emulation runtime
short. Unlike the mechanism of time dilation, we try to ad-
vance virtual clock as fast as possible, regardless it is faster or
slower than real time.

Our approach also bears similarity to that of the LAPSE
[17] system. LAPSE simulated the behavior of a mes-
sage-passing code running on a large number of parallel pro-
cessors, by using fewer physical processors to run the applica-
tion nodes and simulate the network. In LAPSE, application
code is directly executed on the processors, measuring execu-
tion time by means of instrumented assembly code that
counted the number of instructions executed; application calls
to message-passing routines are trapped and simulated by the
simulator process. The simulator process provides virtual time
to the processors such that the application perceives time as if
it were running on a larger number of processors. Key differ-
ences between our system and LAPSE are that we are able to
measure execution time directly, and provide a framework for
simulating any communication network of interest (LAPSE
simulates only the switching network of the Intel Paragon).

III. SYSTEM ARCHITECTURE

We begin by providing an introduction of OpenVZ sys-
tem, and then explain the architecture of our system.

A. Overview of OpenVZ

OpenVZ provides container-based virtualization for
Linux [24]. It enables multiple isolated execution environ-
ments (called Virtual Environments, VEs, or containers)
within a single OS kernel. It provides better performance and
scalability as compared with other virtualization technologies.
Figure 1 shows the architecture of OpenVZ. A virtual envi-
ronment looks like a separate physical machine. It has its own
process tree starting from the init process, its own file sys-
tem, users and groups, network interfaces with IP addresses,
etc. Multiple VEs coexist within a single physical machine,
and they not only share the physical resources but also share
the same OS kernel. All VEs have to use the same version of
the same kernel.

A VE is different from a real OS. A VE uses fewer re-

sources. For example, a newly created Ubuntu VE can have
fewer than 10 processes. A VE has limited function compare
with a real machine, e.g., it is prohibited from loading or un-
loading kernel modules inside a VE. Finally, the Linux host
operating system provides all kernel services to every VE; the
operating system is shared.

OpenVZ offers two types of virtual network interfaces to
the VEs, one called a virtual network device (or venet in
OpenVZ parlance) and the other called a virtual Ethernet de-
vice (or veth in OpenVZ parlance) [24]. A virtual network
device has lower overhead, but with limited functionality,
serving simply as a point-to-point connection between a VE
and the host OS. It does not have a MAC address, has no ARP
protocol support, no bridge support, and no possibility to as-
sign an IP address inside the VE. By contrast, a virtual Ether-
net device has slightly higher (but still very low) overhead,
but it behaves like an Ethernet device. A virtual Ethernet de-
vice consists of a pair of network devices in the Linux system,
one inside the VE and one in the host OS. Such two devices
are connected via Ethernet tunnel: a packet goes into one de-
vice will come out from the other side.

The OpenVZ CPU scheduler has two levels. The first
level scheduler determines which VE to give time slice to,
according the VE’s CPU priority and limit settings. The se-
cond level scheduler is a standard Linux scheduler, which
decides which process within a VE to run, according to the
process priorities.

Figure 1 Architecture of OpenVZ

B. System designs

The architecture of our OpenVZ-based emulation system
is illustrated by Figure 2. For a given experiment a number of
VEs are created, each of which represents a physical machine
in the scenario being emulated. Applications that run natively
on Linux run in VEs without any modification. The sequenc-
ing of applications run on different VEs is controlled by the
Simulation/Control application, which runs on host OS (or
VE0 in OpenVZ parlance). Sim/Control communicates to the
OpenVZ layer to control VE execution so as to maintain tem-
poral fidelity. For instance, a VE that is blocked on a socket
read ought to be released when data arrives on that socket.

Sim/Control knows when the data arrives, and so knows when
to signal OpenVZ that the blocked VE may run again.

Under unmodified OpenVZ all VEs share the wallclock
of the host computer (accessed through the shared host oper-
ating system). In our virtual time system, each VE has its own
virtual clock (denoted as vclki in Figure 2), while the host OS
still uses the wallclock (denoted as wclk). Different virtual
clocks advance separately, but all of them are controlled by
the network simulator via the virtual time kernel module (V/T
module in the figure).

Sim/Control captures packets sent by VEs and delivers
them to destination VEs at the proper time (“proper time”
being a function of what happens as the network is simulated
to carry those packets). Sim/Control also controls the virtual
times of VEs, advancing their virtual times as a function of
their execution, but also blocking a VE from running, in order
to prevent causal violation. For example, if a packet should
arrive at a VE at virtual time t, but the virtual time of that VE
is already t+1, a causal violation occurs because the applica-
tion has missed the packet and may behave differently than
expected. Sim/Control is responsible for stopping this VE at
virtual time t, until the packet arrives. This is accomplished by
modifying the scheduler, as we will describe in Section IV.

Sim/Control consists of two cooperating subsystems: 1)
network subsystem (denoted as N/W in Figure 2) and 2) virtual
time subsystem (denoted as V/T). For instance, when a packet
sent by VE1 to VE2, it is captured by Sim/Control, which has
to know the virtual sending timestamp of that packet in order
to know when it entered the network. After the simulator de-
termines the virtual arrival time of the packet at VE2, the sim-
ulator must ensure that VE2 has advanced far enough in sim-
ulation time to receive that packet, or that VE2 is blocked
waiting for a packet, and so needs to be released to run.

Figure 2 Architecture of network emulation with virtual time

C. Sim/Control

The Sim/Control process captures VE packets, simulates
their travel within the imagined network, and delivers them to
their destinations. Packet capture is accomplished using the
OpenVZ virtual Ethernet device (veth). When an application
within a VE sends a packet via its veth interface, the packet

P
h

ys
ic

al
 m

ac
h

in
e

Host operating system

OpenVZ layer

OpenVZ template

Hardware (processor, network, etc.)

V
ir

tu
al

 e
n

vi
ro

n
m

en
t

users and groups

file system

process tree

n/w interfaces

V
ir

tu
al

 e
n

vi
ro

n
m

en
t

users and groups

file system

process tree

n/w interfaces

 OpenVZ layer

 Linux Kernel

V/T module

VE1

 veth1

Sim/Control (VE0)

VEn

 vethn

……

veth1..n

Scheduler

N/W V/T vclk1 vclkn

wclk

appears at veth in the host OS due to the virtual Ethernet
tunneling. Sim/Control monitors all veth interfaces to capture
all packets sent by all VEs. Similarly, when it wants to deliver
a packet to a VE, it just simply sends the packet to the corre-
sponding veth interface. The packet tunnels to the VE’s cor-
responding veth interface, where the application receives it.
The packet travel route is shown in Figure 3.

Figure 3 Packet traverse route in emulation

Sim/Control needs to cooperate with the virtual time
subsystem when VEs are either sending packets or receiving
packets. For example, in real system, blocking socket sends
(e.g., sendto()) are returned after the packets have been tak-
en care of the underlying OS. Correspondingly, in emulation,
the process should perceive comparable amount of elapsed
time after the call returns. This is done by trapping those sys-
tem calls, suspending the VE, have Sim/Control figure out the
time at which the packet is taken care, and then return control
to the VE, at the corresponding virtual time. Similarly, when
an application is blocked waiting to receive a packet, it should
be unblocked at the virtual time of the packet’s arrival. The
comparison between real network operations and emulated
ones is shown in Figure 4. As long as the processes perceive
comparable elapsed time after system calls are returned and
the network simulation gives high enough fidelity for the sys-
tem measures of interest, this approach is viable. Our ap-
proach to integrating the network simulation allows us to in-
clude any one of a number of physical layer models. Detailed
technical issues are discussed in Section IV.

Figure 4 Real network operations vs. simulated network operations

D. Virtual time subsystem

The responsibility of the virtual time subsystem includes
advancing virtual clocks of VEs and controlling the execution
of VEs. From the operating system’s point of view, a process
can either have CPU resources and be running, or be blocked
and waiting for I/O [30] (ignoring a “ready” state, which

rarely exists when there are few processes and ample re-
sources). The wall clock continues to advance regardless of
the process state. Correspondingly, in our system, the virtual
time of a VE advances in two ways. At the point a VE be-
comes suspended, the elapsed wallclock time during its exe-
cution burst is added to the virtual clock. This is shown in
Figure 5.

The situation is different when the application within a
VE interacts with the I/O system. Our modified OpenVZ ker-
nel traps the I/O calls, Sim/Control determines the I/O delay
and adds that to the VE’s virtual clock, and then returns the
I/O request to unblock the process. As shown in Figure 5,
when I/O delay is accurately simulated, the virtual clock will
have the same value as wall clock, and therefore the applica-
tion perceives the same elapsed time. However, the real
elapsed time depends on the time spent on emulating such I/O,
which depends on the model and the communication load.

Figure 5 Wall clock time advancement vs. virtual time advancement

It is sometimes necessary to block a running VE in order
to prevent casual violation. An example is when an applica-
tion queries for incoming I/Os, e.g. a non-blocking socket call
using select() [32]. Even though there may be no pending
packets at that wallclock moment, it is possible still for a
packet to be delivered with a virtual arrival time that is no
greater than the virtual time t of the select() call, because
the virtual clock the sending VE may be less than t. Therefore,
when an application makes a non-blocking socket receive call
at virtual time t, our system suspends it until we can ensure no
packets can arrive with time-stamps less than or equal to t. On
a blocking call we need to ensure that the right packet un-
blocks the VE, and so the same logic applies – before the VE
is released at time t, we ensure that any packet with time
stamp t or small has already been delivered. Implementation
details are given in Section IV.

IV. IMPLEMENTATION

We next present implementation details of our virtual
time system, and discuss some related issues.

A. Implementation architecture

As shown in Figure 2, virtual time management needs
kernel support, therefore modification to OpenVZ kernel is
necessary. We try to keep the modifications simple. The kernel
implements only some primitive operations, while
Sim/Control calls these operations to control sequencing of

OpenVZ layer

Linux kernel

V
E1

veth1

Sim/Control app

veth1 veth2

V
E2

veth2

app

CPU send() CPU recv() CPU

Sim/Control

real system

emulation CPU CPU CPU send() recv()

Operating system & hardware

system call return system call return

trap return trap return

CPU I/O CPU I/O CPU

wallclock time 0 1 2 3 4 5 6 7

 virtual time 0 1 3 4 5 6 7

Trap & simulate I/O, and advance virtual time

wallclock scale (real time)

real system

emulation CPU CPU CPU

VE execution. Sim/Control runs at user level on the host OS
(VE0), and communicates with the kernel through new system
calls we have implemented. We have chosen system calls to
be the communication channel between user space and kernel
because of its high efficiency. We placed Sim/Control in user
space in order to keep the kernel safe, but the frequent com-
munication between user and kernel raises the question of
overheads. Section V.E discusses our measurement of this,
found in our experiments to be small.

We first provide the kernel modifications in Subsection B,
and then present the design of Sim/Control in Subsection III.C.
Finally, we discuss the upper bound of error in Subsection D.

B. Modifications to OpenVZ kernel

OpenVZ scheduler. Scheduling VEs properly ensures
the correctness of the emulation. To support this we modified
the OpenVZ scheduler so that Sim/Control governs execution
of the VEs. By making system calls to the kernel, Sim/Control
explicitly gives time slices to certain VEs; a VE may run only
through this mechanism.

The typical scheduling sequence of emulation is shown in
Figure 6, showing how Sim/Control and VEs take turns run-
ning. We refer Sim/Control time slice together with all the
subsequent VE time slices before the next Sim/Control time
slice as one emulation cycle. At the beginning of a cycle, all
VEs are blocked. In its time slice Sim/Control pushes all due
events to VEs (such as packet deliveries, details in Subsection
III.C), and then decides which VEs can have time slices and
notifies the kernel that they may run. Causal constraints may
leave any given VE blocked, but Sim/Control will always
advance far enough in virtual time so that at least one VE is
scheduled to run in the emulation cycle. VE executions within
an emulation cycle are logically independent of each other,
and so their execution order does not matter.

Figure 6 Scheduling of VEs and Sim/Control (example of 3 VEs)

An executing VE is suspended when either it uses up the
time slice or when it makes a system call that is trapped (typ-
ically one that interacts with the communication system).
Such system calls includes network send and receive calls, as
discussed in Section III.C. Once a VE makes such special
calls, it is blocked immediately and cannot run any more
within this emulation cycle. After a VE stops, the actual time
it executed will be added to its virtual clock.

This discussion summarizes Rule #1: A VE can run only
after Sim/Control has released it, and will then suspend when
either its time slice is consumed, or it executes a trapped sys-
tem call that interacts with the I/O subsystem.

Trap network related system calls. We first discuss
socket send calls, both blocking and non-blocking. As pointed
out by Section III.C, blocking socket sends should be returned

after a virtual time equivalent to the time required to transmit
the packet. In unmodified OpenVZ, such system calls are re-
turned almost immediately, as the virtual Ethernet device han-
dles packets at an extremely high speed. However, the time
elapsed in real systems depends on the underlying physical
layer. It can be in the order of microseconds for some gigabit
Ethernet [39], but can be as large as several milliseconds for
some wireless networks. We modified OpenVZ to give
Sim/Control the responsibility of returning those system calls.
The VE is suspended at the point of the call, and its current
virtual time is updated. Since the packet was presented to the
virtual Ethernet interface it tunnels almost immediately to be
reflected at its corresponding interface in Sim/Control.
Therefore at the beginning of the next emulation cycle
Sim/Control observes the packet and marks its send time as
the virtual time of its suspended source. Once the packet de-
parture has been fully simulated (and this may take some
number of emulation cycles, depending on the network model
and the traffic load on the simulator), Sim/Control will know
to release the suspended sender. We likewise suspend a VE
that makes a non-blocking send, but just to obtain the packet’s
send time. In this case Sim/Control immediately releases the
sender to run again in the following emulation cycle.

Now consider socket receive calls. As discussed in Sec-
tion III.D, an application that makes a socket receive call (ei-
ther blocking or not) is suspended before it looks at the re-
ceive buffer in order to ensure that the state of the receive
buffer is correct for that virtual time. The VE must wait at
least until the next cycle, at which point Sim/Control will ei-
ther release it to run, or not, depending on whether there is a
threat of violating causality constraints. Once the VE is re-
leased to run again it looks at the receive buffer and responds
to the previous socket receive call with normal semantics
(possibly blocking again immediately, if it is a blocking re-
ceive that finds no packet in the buffer).

This discussion summarizes Rule #2: a VE is always
suspended upon making a network related system call.

Other kernel modifications. Other kernel modifications
are also necessary. This includes trapping gettimeofday()
system calls and returning virtual times to the application, and
basing kernel timers on virtual time. The implementations are
entirely straightforward and need no further comment.

C. VE Scheduling Control

Sim/Control runs in user-space in the host OS. With the
support of the kernel, it only needs to maintain a simple logic
to control VE execution. The algorithm used is described in
Algorithm 1, and it is a simple variation of a conservative
parallel discrete event simulation (PDES) synchronization
method [27][28]. Sim/Control maintains its own virtual clock
current_time. Conceptually, in every time slice of an emula-
tion cycle, Sim/Control does the following one by one: (1)
buffers packets sent by VEs during the last cycle (line 10-15),
(2) simulates the network and pushes due events to VEs (line
17-23), (3) decides which VEs can run in the next cycle (line
25-31), (4) advances virtual clocks if no VEs can run (line
33-38), and finally (5) yields the processor to let VEs run (line
41-42). In step (3), an event is considered “due” if its virtual

VE1 Sim/
Control

wallclock scale (real time)

time slice VE3 VE2 VE2 Sim/
Control

VE1 VE3 ……

emulation cycle emulation cycle

time is no greater than the virtual time of the VE to which it is
pushed. We will comment more on this in our section on error
analysis.

As shown in Algorithm 1, the Sim/Control calls the net-
work simulator program nw_sim to simulate the network (line
17 & 35); this function call needs some explanation. The first
parameter is the current status of the network (stored in the VE
data structure), a status that changes as the simulation exe-
cutes. The second and third parameters indicate the desired
start time and end time of simulation. The fourth parameter is
a flag, explained later. The outcomes of nw_sim are the events
to be returned to VEs (both finished transmissions and packet
receptions) within the desired time interval, and they are
stored back into the network status VE. With this information,
the Sim/Control knows which system calls to return and
which packets to deliver within a single time slice (line
20-21).

Algorithm 1 Logic for Controlling VE Execution

01 for each VE i do

02 init_ve_status(VE[i])
03 end for

04 current_time ← 0

05
06 while true do

07 wait_until_all_ves_stop()

08 last_time ← current_time
09 current_time ← mini(VE[i].time)

10 for each VE i do

11 for each packet p sent by VE[i] do
12 p.send_time ← VE[i].time

13 buffer_packet(VE[i], p)

14 end for
15 end for

16

17 nw_sim(VE, last_time, current_time, false)
18 while true do

19 for each VE i do

20 return_due_send_calls(VE[i])
21 deliver_due_packets(VE[i])

22 fire_due_timers(VE[i])

23 end for
24

25 for each VE i do

26 VE[i].can_run ← VE[i].ready and
27 VE[i].time < current_time + δ

28 end for

29 if at least one VE can run then
30 break

31 end if

32
33 next_time ← minj(virtual_timers[j].exp)

34 current_time ←

35 nw_sim(VE, current_time, next_time, true)
36 for each VE i do

37 VE[i].time ← max(VE[i].time, current_time)

38 end for
39 end while

40

41 release_VEs()
42 sched_yield()

43 end while

The fourth parameter of nw_sim interface is a flag which
tells the simulator whether to stop when such return event first
occurs. When the flag of nw_sim is set to false, network is
simulated for the given time interval (e.g. line 17) and returns
the virtual end-time of its execution period. When the flag is
set to true, the network simulator finds the exact time of the
next return event (e.g. line 35), stops and returns that time.
When the emulator detects that no VEs can run, it advances its
current virtual clock to the point when next event happens.
Such event can be either a packet transmission or a kernel
timer expiration, whichever happens first (line 33-35).

Finally, there is a tunable parameter δ in line 27 used to
control how tightly virtual clocks of different VE are synchro-
nized. In the following section we show how an application
running multiple threads in a VE can have different behavior
in our system that it does in a real system. The smaller δ is,
the smaller the potential error of that difference can be. Our
experiments use a value of 1msec, which is the minimum pos-
sible value in our current platform.

D. Error Analysis

According to Algorithm 1, an event is delivered to a VE
no earlier than it should be, in the sense that if an event time
is t, the VE notices it at a time u that is at least as large as t.
Since we suspend a VE at all points where it interacts with the
network, if the VE is single-threaded it will be insensitive to
the difference between t and u because its behavior is not af-
fected by the arrival at t. This is not the case however if an
application is multi-threaded, as we show below.

Consider an application which consists of two threads.
Thread A does CPU intensive computation, while Thread B
repeatedly receives packets using blocking socket call
recvfrom(), and calls gettimeofday() immediately after it
receives a packet. In a Linux system, when there is an incom-
ing packet, Thread B will be immediately be run, pre-empting
Thread A. As a result, this application can get the exact time
of packet arrival. This is illustrated in Figure 7.

Figure 7 Error in virtual time of packet delivery

packet arrives

CPU

wallclock time 0 1 2 3 4

 virtual time 0---------->1.............1---------->2..............2---------->3.............3---------->4

Sim/
Control

real system:

emulation:

recv()

CPU CPU

CPU CPU

recv()

CPU

Sim/
Control

Sim/
Control

packet delivery

interrupt gettimeofday()=2.5

interrupt gettimeofday()=3

thread B

thread A

thread B

thread A

Now consider the same application running on our virtual
time system. Whenever Thread B makes the socket receive
call, the whole application – both threads – is blocked by Rule
#2. After Sim/Control releases the application to run again,
Thread A will take off. However, once the application gets the
CPU, it uses the entire time slice because Thread A keeps do-
ing computation. Meanwhile Sim/Control is waiting its turn
and so packets are not delivered to wake up Thread B until
that turn comes around, after the actual delivery time. In this
case, the error in that delivery time can be as most as large the
time slice the application is given to. The comparison is
shown in Figure 7.

We summarize the above case as an instance of an inter-
rupt-like event. The key problem are situations where in the
real system a process is interrupted immediately, whereas in
the emulation the interrupting event is not recognized until
Sim/Control gets a time-slice. We can reduce this error by
reducing the length of the time-slice, but this of course in-
creases the overhead by increasing context switching [30].
The tradeoff between behavioral accuracy and execution
speed is a common tradeoff in simulation [29]. We leave ex-
ploring such tradeoff as future work.

V. EVALUATION

This section provides our experimental results that
demonstrate the performance of our virtual time system.

A. Experimental framework

In order to validate the emulated results, we compare
them with that we obtained in [36] within the Illinois Wireless
Wind Tunnel (iWWT). The iWWT [35] is built to minimize
the impact of environment in wireless experiments. It is an
electromagnetic anechoic chamber whose shielding prevents
external radio sources from entering the chamber; and whose
inner wall is lined with electromagnetically absorbing materi-
als, which reflect minimal energy. This gives us a simulated
“free space” inside the chamber, which is ideal for conducting
wireless network experiments.

We run the same application as we used in [36] within
our emulator. We notice the hardware difference between the
machine on which we run our emulator, and the devices we
used to collected data inside the chamber. Specifically, our
emulator is running on a Lenovo T60 laptop with Intel T7200
CPU and 2GB RAM (if not otherwise specified), while we
used Soekris Engineering net4521 [37] with mini-PCI wire-
less adapters plugged in as wireless nodes inside the iWWT.
Due to the difference in processors, applications running on
the Soekris box should observe longer elapsed times than the
Lenovo laptop. However, this should not bring large error into
the results, as the applications we run are I/O bound ones, i.e.
the time spend on I/O is dominant while the time spend on
CPU is negligible.

In the experiment inside the chamber, the wireless nodes
were operating on 802.11a [38]. Correspondingly, we have an
802.11a physical layer model in our Sim/Control, which pre-
dicts packet losses and delay. Our 802.11a model implements
CSMA/CA, and it uses bit-error-rate model to stochastically

sample lost packets.

B. Validating bandwidth, delay and jitter – one-link scenario

We start with the simplest scenario with two wireless
nodes and one wireless link. Packets are sent to the receiver as
fast as possible using 54Mbps data rate under 802.11a, and the
receiver records the timestamp of each received packet. The
comparison between real trace and emulated results is shown
in Figure 8 and Figure 9. We study the delay rather than
throughput because the sender is sending packets of constant
size, and therefore accurate delay implies accurate throughput,
but not vice versa. The experiment actually persists for 10sec
in real time, but we only show 20 packets for conciseness.

As shown in Figure 8, the emulated result (the 1-flow line)
under our virtual time system is almost identical to the real
trace, with the error within 1msec. The only difference is due
to random retransmissions, which are caused by low SINR. In
802.11a, when the receiver cannot correctly decode the data
frame, it will not send an ACK frame. In this case, the sender
will have to retransmit that data frame, and this will approxi-
mately double the transmission time of this single packet
compare with no retransmission. From the figure, we are able
to tell when a retransmission happens by examining in-
ter-packet arrival time. As retransmission is a random event, it
is reasonable that our 802.11a model cannot predict retrans-
mission for the exact packet as real trace. In general, the mod-
el predicts comparable retransmission rate.

Figure 8 Packet arrival time, one link scenario, with virtual time

Figure 9 Packet arrival time, one link scenario, without virtual time

To demonstrate the accuracy of our system under differ-
ent loads, the previous one-link scenario is replicated several
times, with each replication emulated simultaneously. How-
ever, replicated links are only used to saturate the emulator, so

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ac

ke
t

A
rr

iv
al

 T
im

e
 (

m
se

c)

Packet #

Real trace

Virtual time - 1 flow / 2VEs

Virtual time - 5 flows / 10VEs

Virtual time - 10 flows / 20VEs

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ac

ke
t

A
rr

iv
al

 T
im

e
 (

m
se

c)

Packet #

Real trace

No virtual time - 1 flow / 2VEs

No virtual time - 5 flows / 10VEs

No virtual time - 10 flows / 20VEs

they are independent and will not interfere with each other.
This represents the scenario in which we have multiple
non-interfering wireless links; each flow has the same behav-
ior as a single flow (modulo differences in random number
seeds.) In Figure 8, the 5-flow line and the 10-flow line show
the results of a single flow out of the 5 or 10 simultaneous
ones. Regardless of the number of flows, the behavior of each
flow is identical to 1-flow case, as expected.

For comparison, we run the same experiment under the
system without virtual time, and the results are shown in Fig-
ure 9. The 1-flow result is has only slightly larger error than
that with virtual time, being caused by scheduling delay. This
occurs when a VE cannot get the CPU and execute exactly on
time, including (1) when the network emulator should deliver
a packet to destination VE, and (2) when the destination VE
should process an incoming packet. In fact, such scheduling
delay also exists in virtual time implementation, but VEs will
not perceive delay because their virtual clocks do not advance
meanwhile. The error of not having virtual time here is as
small as 1msec, but it will scale up when the number of VEs
increases, as more VEs may introduce longer delay. As shown
by the 5-flow line in Figure 9, the error can be as large as sev-
eral milliseconds. Worse still, when the offer load is too high
(e.g. the 10-flow line) for the emulator to process in real time,
the error accumulates and becomes larger and larger. This is
occurs because the emulator cannot run fast enough to catch
up with real time.

C. Validating bandwidth, delay and jitter – two-link scenario

We next validate the scenario with four wireless nodes
and two conflicting wireless links. Space limitations inside the
iWWT prohibit study of more complex scenarios. Figure 10
shows the experimental setup. Although we only have four
wireless nodes, we have six different combinations by chang-
ing source/destination pair and data rates. For example, Sce-
nario 3 and Scenario 4 are those of heterogeneous data rate.

We use the iperf link test application [34] to test both
links, and we are interested in both bandwidth and jitter (delay
variation). We configure the emulator to simulate the above
scenario. However, by examining the real data, we found that
the link with Node 2 as sender usually has a higher throughput,
regardless of its receiver. We conclude this is due to the hard-
ware, although the four wireless adapters are of the same
manufacture and same model. We capture such hardware
characteristic by increasing the antenna gain of Node 2 in our
network simulator. Higher antenna gain results in higher
SINR, lower bit error rate (BER), lower retransmission rate,
and finally higher throughput.

The results are shown in Figure 11 and Figure 12. The
former shows comparison of throughput and the latter shows
that of jitter. We observe a very accurate emulated throughput,
with error less than 3% in most cases. On the other hand, the
jitter obtained from emulated platform has a larger error,
which is within 10% in most cases but which sometimes is as
large as 20%. By comparing timestamps generated by the
simulator and that perceived by the application, we found
such error is due to the inaccuracy of the 802.11a model, not
the virtual time system itself. As discussed before, accurate

delay implies accurate throughput but not vice versa. The re-
sults here demonstrate that jitter is more difficult to model
than throughput.

Scenario

ID

Link 1 Link 2

src→dst data rate src→dst data rate

1 2→1 6Mbps 3→4 6Mbps

2 2→4 6Mbps 3→1 6Mbps

3 2→1 54Mbps 3→4 6Mbps

4 2→4 54Mbps 3→1 6Mbps

5 2→1 54Mbps 3→4 54Mbps

6 2→4 54Mbps 3→1 54Mbps

Figure 10 Two-link experiment setup inside the iWWT

Figure 11 Two-link scenarios – throughput

Figure 12 Two-link scenarios – jitter

0

4

8

12

16

20

1 2 3 4 5 6

Th
ro

u
gh

p
u

t
(M

b
p

s)

Scenario #

link 1

link 1 emu

link 2

link 2 emu

0

1

2

3

4

5

1 2 3 4 5 6

Ji
tt

e
r

(m
se

c)

Scenario #

link 1

link 1 emu

link 2

link 2 emu

Node 1

iWWT chamber wall

Node 2

Node 3

Node 4

Soekris box Wireless adapter Legend:

D. Emulation runtime and scalability

We tested the execution speed of our system, by modify-
ing the number of simultaneous network flows. We reuse the
previous one-link scenario, in which the sender transmits
packets to the receiver for 10sec using 54Mbps data rate. As
in Subsection B, we replicate this link by several times, but
only in order to saturate the emulator.

The emulation runtime under different loads is shown in
Figure 13. When there is only one link, the runtime is only
less than 2sec in real time. Compared with 10sec elapsed in
virtual time, emulation runs faster because in this case the
emulated I/O is faster than real I/O. As the number of flows
increases, the runtime increases linearly as well. When there
are more than 7 flows, the emulation runs slower than real
time because of large volume of traffic. In addition, we plot
the CPU usage percentage, and we find that our system can
achieve high CPU usage when there is enough load. It cannot
achieve 100% CPU usage because our Lenovo laptop is using
dual-core CPU. As explained in Section IV.C, before the em-
ulator process starts its time slice, it will wait until all VEs
stop running. Different VEs can run on different CPUs simul-
taneously, but the emulator process runs on only one CPU,
and meanwhile the other CPU is idle. As shown in Figure 13,
increased number of flows results in higher CPU utilization.
This is because as the number of flows increases and so does
the number of VEs, the fraction of time during which the
CPUs are saturated by VE execution also increases.

To demonstrate the scalability of our system, we tested
our system on a Dell PowerEdge 2900 server with dual Intel
Xeon E5405 and 16GB RAM. We rerun the above scenario
but with 160 flows and 320 VEs, which finishes in 307sec
(compared with < 2 sec. for 1 flow). Our current system can
only run on a single machine, but with its distributed version
as a future work, we will be able to emulate more network
nodes. Nevertheless, we found that implementation with
OpenVZ yields high VE density (320 VEs per physical ma-
chine), thanks to the light weight of OpenVZ.

Figure 13 Emulation runtime

E. Implementation overhead

We are concerned about the implementation overhead of
our system, and we measure it in the following way. We
slightly modify the user-level emulator application, making it

run in real time instead of virtual time so that it can run on
original Linux platform. When running on original Linux, we
use the snull virtual Ethernet tunnel module [33] to replace
the virtual Ethernet devices created OpenVZ, so that both ip-
erf and the emulator can be configured in the same way.

We reuse the scenario of the previous subsection, but we
only use 5 flows so that our Lenovo laptop is capable to run in
real time. When running in real time, either on original Linux
or on original OpenVZ, the runtime of emulation is exactly
10sec. Instead of using the elapsed time of wallclock, we use
the total CPU time for comparison. For instant, if the average
CPU utilization is 60% during the 10-second period, the total
CPU time is 6sec.

 Original

Linux

Original

OpenVZ

Virtual time

system

Total CPU time 6.345 sec 6.478 sec 6.654 sec

Time in % 100.0% 102.1% 104.9%

Figure 14 Implementation overhead

The comparison among Linux, OpenVZ, and our virtual
time system is shown in Figure 14. For the scenario we con-
sider, we obverse 2% overhead of OpenVZ compared with
original Linux. This matches the claim on OpenVZ project
website, which says OS-level virtualization only has 1%-3%
overhead [24]. In addition, we observe another 3% overhead
of implementing virtual time, based on the original OpenVZ
system. We find that such overhead is due to both frequent
system calls and context switches. Implementing the emulator
in kernel space might help on reducing such overhead, but we
prefer to keep the kernel safe and simple. The observed 3%
overhead is low, and considering the performance of OS-level
virtualization, we conclude that our system is highly scalable.

Finally, we notice that such implementation overhead on
OpenVZ is competitively low compared with other virtualiza-
tion techniques. For instance, QEMU without a kernel accel-
eration module is 2X to 4X slower [21]. We are currently de-
veloping a virtual time system for QEMU as well, in order to
support time virtualization to applications running on a larger
number of operating systems.

VI. CONCLUSIONS AND FUTURE WORK

We have implemented a virtual time system which allows
unmodified application to run on different virtual environ-
ments (VEs). Although multiple VEs coexist on a single
physical machine, they perceive virtual time as if they were
running independently and concurrently. Unlike previous
work based on Xen paravirtualization, our implementation is
based on OpenVZ OS-level virtualization, which offers better
performance and scalability (at the price of less flexibility). In
addition, our system can achieve high utilization of physical
resources, making emulation runtime as short as possible. Our
implementation has only 3% overhead compared with
OpenVZ, and 5% compared with native Linux. This indicates
that our system is efficient and scalable.

Through evaluation, we found the accuracy of virtual

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

C
P

U
 u

ti
liz

at
io

n
 (

%
)

R
u

n
ti

m
e

 (
se

c)

of flows

Runtime

CPU utilization

time can be within 1msec, at least if an accurate network sim-
ulator is used. It is indeed the model that introduces the error,
rather than the virtual time system itself. While our system
can currently simulate limited type of hardware, future work
can model more hardware configuration, e.g. multicore CPU,
other I/O devices such as disk. It is also worth exploring the
tradeoff between behavioral accuracy and execution speed in
the domain of emulation using unmodified compiled code.

ACKNOWLEDGEMENTS

This material is based upon worked supported under Dept.
of Energy under Award Number DE-0E00000097, and under
support from the Boeing Corporation.1

REFERENCES

[1] J. Ahrenholz, C. Danilov, T.R. Henderson, and J.H. Kim, “Core: a

real-time network emulator”, MILCOM 2008, Nov. 2008.

[2] J. Mayo, R. Minnich, D. Rudish, R. Armstrong, “Approaches for scala-
ble modeling and emulation of cyber systems: LDRD final report”,

Sandia report, SAND2009-6068, Sandia National Lab, 2009.

[3] The Network Simulator - ns-2: http://www.isi.edu/nsnam/ns/

[4] The ns-3 project. http://www.nsnam.org/

[5] A. Sobeih, W.-P. Chen, J. Hou, L.-C. Kung, N. Li, H. Lim, H.-Y. Tyan,

and H. Zhang, “J-Sim: a simulation and emulation environment for
wireless sensor networks”, IEEE Wireless Communications Magazine,

vol. 13, no. 4, pp. 104-119, Aug. 2006.

[6] OPNET Modeler: Scalable Network Simulation:
http://www.opnet.com/solutions/network_rd/modeler.html

[7] P. Riley and G. Riley, “SPADES--A distributed agent simulation envi-

ronment with software-in-the-loop execution”, Winter Simulation
Conference Proceedings, pp. 817–825, 2003.

[8] B. Chun., D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,

and M. Bowman, “Planetlab: an overlay testbed for broad-coverage
services”, SIGCOMM Computer Communication Review, 2003.

[9] A. Vahdat, K. Yocum, K.Walsh, P. Mahadevan, D. Kostić, J. Chase, and

D. Becker, “Scalability and accuracy in a large-scale network
emulator”, In Proceedings of the 5th Symposium on Operating Systems

Design and Implementation, 2002.

[10] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,

M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental en-
vironment for distributed systems and networks”, In Proceedings of the

5th Symposium on Operating Systems Design and Implementation,
2002.

[11] D. Gupta, K. Vishwanath, and A. Vahdat, “DieCast: testing distributed

systems with an accurate scale model”, In Proceedings of the 5th
USENIX Symposium on Networked System Design and Implementa-

tion (NSDI'08), San Francisco, CA, USA, 2008.

[12] P. Biswas, C. Serban, A. Poylisher, J. Lee, S.-C. Mau, R. Chadha, C.-Y.
Chiang, R. Orlando, K. Jakubowski, “An integrated testbed for virtual

ad hoc networks”, Proceedings of TRIDENTCOM 2009, April 6-8,
2009.

[13] M. Erazo, Y. Li, and J. Liu, “SVEET! A scalable virtualized evaluation

1
 This report was prepared as an account of work sponsored by an agency of

the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or pro-
cess disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does not neces-
sarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opin-
ions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

environment for TCP”, TridentCom'09, 2009.

[14] A. Grau, S. Maier, K. Herrmann, K. Rothermel, “Time Jails: a hybrid
approach to scalable network emulation”, Workshop on Principles of

Advanced and Distributed Simulation (PADS), pp. 7-14, 2008.

[15] E. Weingärtner, F. Schmidt, T. Heer, and K. Wehrle, “Synchronized
network emulation: matching prototypes with complex simulations”,

SIGMETRICS Perform. Eval. Rev., vol. 36, no. 2, pp. 58–63, 2008.

[16] R. Pan, B. Prabhakar, K. Psounis, and D. Wischik, “SHRiNK: a method
for scalable performance prediction and efficient network simulation”,

In IEEE INFOCOM, 2003.

[17] P. Dickens, P. Heidelberger, and D. Nicol, “A distributed memory
LAPSE: parallel simulation of message-passing programs”, In Pro-

ceedings of the 8th Workshop on Parallel and Distributed Simulation
(PADS ’94), pp. 32-38, Jul. 1994.

[18] P. Padala, X. Zhu, Z.Wang, S. Singhal, and K. Shin, “Performance

evaluation of virtualization technologies for server consolidation”,
Technical Report HPL-2007-59, HP Labs, Apr. 2007.

[19] B. Walters, “VMware virtual platform”, Linux journal, 63, Jul. 1999.

[20] VMware virtualization software: http://www.vmware.com/

[21] F. Bellard. “QEMU, a fast and portable dynamic translator”, Proceed-
ings of the USENIX Annual Technical Conference, FREENIX Track,

pp. 41–46, 2005.

[22] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtualiza-

tion”, In Proceedings of the nineteenth ACM symposium on Operating
Systems Principles (SOSP19), pages 164–177. ACM Press, 2003.

[23] The User-Mode Linux Kernel: http://user-mode-linux.sourceforge.net/

[24] OpenVZ: a container-based virtualization for Linux. Project website

available at http://wiki.openvz.org/Main_Page

[25] Virtuozzo Containers: http://www.parallels.com/products/pvc46/

[26] G. Bhanage, I. Seskar, Y. Zhang, and D. Raychaudhuri, “Evaluation of

OpenVZ based wireless testbed virtualization”, Technical Report,
WINLAB-TR-331, Rutgers University, 2008.

[27] R. Fujimoto, “Parallel discrete event simulation”, Communication of

the ACM, vol. 33, no. 10, pp. 30-53, 1990.

[28] D. Nicol, “The cost of conservative synchronization in parallel discrete
event simulations”, Journal of the ACM, vol. 40, pp. 304-333, 1993.

[29] D. Nicol, “Tradeoffs between model abstraction, execution speed, and

behavioral accuracy”, European Modeling and Simulation Symposium,
2006.

[30] A. Tanenbaum, Modern Operating Systems, Third Edition, Prentice

Hall, Dec. 2007.

[31] D. Bovet and M. Cesati, Understanding Linux Kernel, Third Edition,
O'Reilly Media, Nov. 2005.

[32] C. Benvenuti, Understanding Linux Network Internals, O’Reilly Media,
Dec. 2005.

[33] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers,

Thrid Edition. O’Reilly Media, Feb. 2005.

[34] Iperf link test application: http://iperf.sourceforge.net/

[35] N. Vaidya, J. Bernhard, V. Veeravalli, P. R. Kumar , R. Iyer, “Illinois
Wireless Wind Tunnel: a testbed for experimental evaluation of wire-

less networks”, SIGCOMM’05 Workshops, 2005.

[36] Y. Zheng and N. Vaidya, “Repeatability of Illinois Wireless Wind Tun-
nel”, Technical Report, Wireless Networking Group, University of Il-

linois at Urbana-Champaign, May 2008.

[37] Soekris Engineering box: http://www.soekris.com/net4521.htm

[38] 802.11a-1999 High-speed Physical Layer in the 5 GHz band. IEEE

standard, 1999.

[39] D. Jin, D. Nicol, and M. Caesar, “Efficient gigabit ethernet switch
models for large-scale simulation”, Principles of Advanced and Dis-

tributed Simulation (PADS), May 2010.

[40] Y. Zheng and D. Nicol, “Validation of radio channel models using an
anechoic chamber”, Principles of Advanced and Distributed Simulation

(PADS), May 2010.

