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ABSTRACT

Power Grid Digital Communication networks are needed for the delivery of

Phasor Measurement Unit (PMU)[1] sensor data with real time guarantees

to the control centers for timely decisions. Present day network systems

are unable to ensure the real-time needs of the PMU data as they are not

designed to support PMU devices. Hence, the need arises for new commu-

nication and control protocols. This thesis describes the Cooperative Con-

gestion Control framework to ensure real-time guarantees for PMU data and

to respond if transient deviations in real-time PMU network traffic occur.

The framework utilizes a) NASPI[3], [4] aligned multiple service class queu-

ing architecture; b) Cooperative real-time flow scheduling and Bandwidth

reassignment; c) Cooperative coordination and back-pressure among neigh-

boring nodes. It then yields real-time PMU data guarantees during transient

traffic pattern changes and/or overload situations. Our experiments confirm

that the framework delivers real-time performance very well under different

transient scenarios.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Power grid status monitoring and control capabilities are very significant to

understand and manage complex power generation and transmission pat-

terns, to avoid blackouts etc. The present day power grid digital commu-

nication system, i.e, Supervisory Control and Data Access (SCADA) is in

use from about 40 years. With the introduction of Phasor Measurement

Unit (PMU) sensors, the need for more flexible and adaptive communication

networks became inevitable. The SCADA communication system features a

centralized star-topology, point to point communication, severe bandwidth

constraints and proprietary protocols which are not sufficient to meet the

requirements of todays grid. Limitations of SCADA are discussed in more

detail in [7].

Infrastructure critical networks such as power grid digital communication

networks are those that have very strict requirements on real-time availability,

reliability and security. These networks need to assure end-to-end latency

and throughput guarantees to the control and data packets of many critical

flows.

Intelligent decision making at the control centers require wide-area situa-

tional awareness about the grid, which provides comprehensive view of the

entire interconnection when multiple utilities’ measurements are combined.
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This is made possible by the PMUs which can provide time synchronized and

precise grid measurements called synchrophasor measurements.

North American SynchroPhasor Initiative’s (NASPI)[2] vision is to im-

prove power system reliability through wide-area measurement, monitor-

ing and control. NASPI is working to develop an industrial grade, secure,

standardized, distributed, and expandable data communications infrastruc-

ture, called the NASPI network or NASPInet, to support synchrophasor

applications that depend on shared PMU data. A conceptual architec-

ture of NASPInet and its functional and security requirements are cap-

tured in NASPInet specification documents[3], [5] commissioned by the U.S.

DOE. Figure 1.1 shows a high-level conceptual architecture envisioned for

Figure 1.1: NASPInet Architecture

NASPInet. NASPInet is composed of Phasor Gateways (PGWs) and a Data

Bus (DB). The DB includes a Wide Area Network (WAN) and associated

services to provide basic connectivity, QoS management, performance moni-

toring, cyber security, and policy enforcement over data exchanged through
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NASPInet. Utilities A, B and C are the power grid sensing stations (e.g.,

substations). Each utility contains PMU sensors, Intelligent Electronic De-

vices (IEDs) and other applications (Apps) aggregated at the Phasor Data

Concentrators (PDCs) connected to the WAN via the PGW. There are mon-

itoring centers which require the sensors’ data for timely decisions.

Designing a deployable NASPInet architecture is comprised of many chal-

lenges.

1. Design of distributed WAN for PMU data delivery to the monitoring

centers.

2. Meet Quality of Service (QoS) requirements of PMU applications, that

have very stringent latency requirements, over a large scale network.

Wide Area Network of the NASPInet can use options ranging from the

public Internet, MPLS circuits to utility fiber networks. There are several

middleware systems that can provide messaging over such wide area commu-

nication networks even when they use heterogeneous underlying networking

technologies. Examples of such middleware are, GridStat[7] Data Distribu-

tion Service for Real Time Systems (DDS2), System of Systems Common Op-

erating Environment (SOSCOE3), and work by Schantz et. al. [6]. Among

these, Gridstat has been developed in the context of the power grid[7].

GridStat is designed to address the need for a flexible and robust commu-

nication system in the electrical power grid, and provides a specialization of

the publisher-subscriber paradigm. Grid- Stat middleware manages network

resources, enables reliable delivery of data to any point and provides QoS

(Quality of Service) for data streams. GridStat is divided into two planes;

the management plane and the data plane. The management plane consists

of a hierarchy of QoS brokers which collectively manage resources and sub-
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scriptions in the data plane. The data plane is a virtual message bus and lets

publishers provide data to the network and enables subscribers to establish

subscriptions to status data through a status router network. The use of QoS,

on a per-subscription basis, allows subscribers to specify multiple redundant

delivery paths (spatial redundancy), subscription interval and delay.

1.2 Problem Description and Contributions

These infrastructure critical networks (NASPInet) have challenges which the

Internet does not possess. Critical data loss (e.g., PMU control data) must

be minimal and PMU traffic packets have strict end-to-end deadlines. Since

power grid status monitoring is also moving towards Internet protocols and

services, the existing Internet(IP) technologies must be modified with new

protocols to fit into the real-time PMU requirements. One of the major

problems for the power grid critical networks (NASPInet) is the congestion

of the PMU data streams (flows) in case of increased traffic demands and/or

other transient traffic stress situations. During the period of congestion, the

real time flows may not meet their delay requirements leading the NASPInet

into an unstable and untrusted state. Hence, early notification of conges-

tion and cooperative congestion control are crucial techniques to respond

to unpredictable grid/traffic events and protect real-time PMU flows from

violations of their deadlines. In this paper we introduce the Cooperative Con-

gestion Control (CCC) framework for handling unpredictable traffic events

and changes which cause transient congestion situations in the NASPInet.

”Cooperation” is defined in two ways. One being nodes utilizing the early

congestion notification, and the other being nodes using the policy-based

correlation between different flows i.e., cooperative flows. Cooperative Con-
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gestion Control assumes that all PMU sensing nodes and their flows from

each power grid substation cooperate with each other during a transient net-

work change and the CCC system ensures real-time guarantees of critical

PMU flows.

The Concept of Cooperative Congestion Control is explored in the wireless

scenario[8] where nodes cooperate with each other to acquire access to the

medium, but in the wired scenario, considering the large size of the networks

and multiple domains, cooperation is explored only in a limited fashion. In

the infrastructure critical networks, we certainly have smaller size networks,

compared to the Internet, and have more control over the network with

service-level agreements from the provider. Hence, nodes can cooperate with

each other to eliminate congestion without the fear of overhead. Moreover,

in the Internet fairness is more important, while in the power grid priority

is more important at the expense of fairness. TCP[10] does not react fast

enough to congestion and does not protect real-time flows in terms of their

delay requirements when congestion occurs. Hence, TCP is unacceptable

in infrastructure critical networks, and its retransmissions and acknowledge-

ments will even worsen the delay situation. Moreover, it doesn’t consider the

correlation of real-time power grid PMU measurement flows. Hence, there

is a need for protocols that provide congestion control and protect real-time

guarantees of critical PMU flows. In our solution, we provide congestion

control over UDP with low overhead and the correlation of flows taken into

account.

Our CCC framework does (1) react fast to unpredictable NASPInet traffic

events, which cause transient congestion, (2) protect delay guarantees of

real-time PMU flows, and (3) utilize the cooperative and correlated nature

of PMU flows coming from the same substation.
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1.3 Outline

Chapter 2 provides some background information about powergrid. In chap-

ter 3 we look at some of the related work. In chapter 4 we define the model,

problem and set of assumptions considered. In chapter 5 we describe our

Cooperative Congestion Control approach and design issues and in chapter 6

implementation is discussed. Chapter 7 evaluates the test results and we

conclude in chapter 8.
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CHAPTER 2

BACKGROUND

2.1 NASPI

The industry is moving towards wide-area measurement, monitoring and con-

trol to improve the reliability of the power grid while meeting the increased

power demand. NASPI’s[2] mission is to create a robust, widely available and

secure synchronized data measurement infrastructure with associated mon-

itoring and analysis tools for better planning and reliable operation of the

power grid. NASPI plans for deployment of hundreds of thousands of Pha-

sor Measurement Units (PMUs) across the grid that send data at 30 to 120

samples/second to hundreds of applications. PMUs are sensors that can read

current and voltage phasors at a substation bus on the transmission power

network. These PMUs give direct access to the state of the grid at any given

instant in contrast to having to estimate the state as is done today. NASPI

applications have varying requirements classified into four classes based on

their data requirements. Typically, feedback control applications like tran-

sient stability control fall into Class A, open loop control applications like

state estimation fall into Class B, situational awareness applications like vi-

sualization and monitoring fall into Class C, post event analysis applications

like disturbance analysis fall into Class D and other kinds of research appli-

cation fall into Class E.
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2.2 NASPInet

Sharing PMU data widely, i.e., with other utilities, provides wide area situ-

ational awareness. NASPI is working to design a wide area network infras-

tructure, dubbed NASPInet[3], to enable wide area sharing of PMU data.

NASPInet will be composed of Phasor Gateways (PGWs) and a Data Bus

(DB). The DB includes a Wide Area Network (WAN) and associated ser-

vices to provide basic connectivity, QoS management, performance monitor-

ing, and cyber security and policy enforcement over data exchanged through

NASPInet. PGW is the sole access point of entities like utilities and mon-

itoring centers (i.e.RCs) to the DB. The PGW will manage the connected

devices on the entitys side, manage QoS, administer cyber security and ac-

cess rights, perform necessary data conversions and interface the entitys own

network with the DB. NASPInet is intended to facilitate the secure exchange

of both real-time streaming data and historical data. PGWs are expected

to support both one-to-one unicast data sharing and one-to-many publisher-

subscriber based data sharing in an efficient manner.

2.3 GridStat

GridStat[7], as shown in Figure 4.3, is a publisher-subscriber framework de-

signed to be deployed in the NASPInet Data Bus. GridStat is divided into

management and data planes. The management plane consists of QoS bro-

ker modules that collectively control and manage resources in the data plane.

The data plane is populated by status routers, publishers and subscribers,

where publishers provide data and subscribers can subscribe to data. The

management hierarchy handles subscription requests and establishes paths

from the publisher to the subscriber through a sequence of status routers.
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CHAPTER 3

RELATED WORK

Significant amount of research has been done on cooperative congestion con-

trol in Vehicular Adhoc Networks (VANET)[8]. The basic idea of applicative-

layer congestion control approach is to define policies, in order to dynamically

and cooperatively schedule messages transmission in the network. Messages

scheduling is carried out according to priorities, evaluated as a function of the

utility of the concerned messages, the sender application and the neighbor-

hood context. The messages transmission in the vehicular network is carried

out in an efficient and cooperative manner, by favoring vehicles holding the

highest-priority messages to send.

In the wired scenario, especially in the internet, congestion control is dealt

in a simple manner in the view of the large number of nodes. TCP end-

to-end congestion control mechanisms[10] are sufficient for the internet flows

which are mostly best effort. For the Premium service flows, service level

agreements are done and the overlay protocols react to the congestion no-

tified through the feedback from the receiver. Various congestion control

and avoidance techniques in the internet scenario are based on Explicit Con-

gestion Notification (ECN), Random Early Detection (RED) etc.[15], [11],

[19].

Asynchronous Transfer Mode (ATM) network is a high-speed network

with its link layer protocol that ensures QoS of the data packets. Further-

more, in case of traffic congestion, ATM networks implement back pressure
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algorithms[18] and send tokens towards senders to slow down the traffic gen-

eration.

Integrated Dynamic Soft Real Time scheduler (iDSRT)[9] is an integrated

real-time CPU and network scheduler. It coordinates the prioritization of real

time task both in CPU usage phase and network usage phase. In this thesis

we are more concerned about the networking phase. inet the component

responsible for the real-time network scheduling implements queue routines

enqueue/deque to support Earliest Deadline F irst (EDF)[12], [13] for the

real time packets and First − in − First − out (FIFO) for the best effort

packets.
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CHAPTER 4

MODELS AND PROBLEM DESCRIPTION

4.1 Power Grid Sensing Application Model

Figure 4.1: Application Classes

The applications are broadly divided into 5 classes in terms of their ser-

vicing data criticality[4], [3] as shown in Figure 4.1. PMUs, IEDs and other

Apps can be assigned to any class based on the importance. Applications

that capture PMU data belong to Class A. On the other hand, applications

that capture surveillance video at substations belong to Class C. For sim-

plicity we assume Class A serves High Real Time (HRT), Class B serves Low

Real Time (LRT) and Class C serves Best Effort (BE) Apps.
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4.2 Device Model

PMU devices produce streams of samples with information about voltage

and current signals[1]. The sampling rate is 30 to 60Hz. Previous generation

of Power grid sensors, the IED devices, sampled at a lower rate (e.g., 2Hz).

4.2.1 PMU Sensor Data

The synchrophasor standard C37.118 [1] defines the concept of frames for

transmitting data from a PMU to a PDC. Basically a Configuration frame,

Data frame, Header frame and a Command frame are specified. These have

a particular structure and data type associated with them. Configuration

frame, Data frame, and Command frame are binary types and Header frame

is of ASCII type. The Data frame is the most frequently transmitted message

based on the PMU sample rate, and the typical size is of the order of few

hundreds of bytes. The variable size in the Data frame is the number of

phasors, and analog and digital signals transmitted, depending on the PMU

capability. Hence for example, if a serial communication is chosen to transmit

the PMU data, the data transfer capability depends on the baud rate of the

communication port. The following table shows the typical data transfer

capabilities, assuming that the PMU supports up to 12 phasor channels.

Figure 4.2: Estimated number of phasor channels that can be transmitted
at various baud rates and PMU reporting rates over serial port.
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4.3 Network Model

Figure 4.3: Grid-Stat Status Dissemination Architecture

One of the proposed WAN architectures for NASPInet is Grid Stat(Figure 4.3)

and we assume a similar management plane model and distributed paradigm

(Publish/Subscribe) for our CCC framework. It means, we assume QoS bro-

kers which are responsible for calculating wide area paths and reservations

of resources between overlay/status routers (SR). The physical path between

the overlay/status routers are then leased with resources, specified by the

QoS brokers, to ensure bandwidth, latency and loss rate guarantees at the

start of the session.
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4.4 Queue Management Model

Each Overlay Router/PGW maintains data queues to serve PMU data streams/flows

as well as data from other power grid applications. In our CCC framework

we assume applications servicing data belonging to three service classes.

1. Class A : High real time Class with very strict end-end latency require-

ment, low loss rate etc.

2. Class B : Low real time Class with strict end-end latency requirement,

low loss rate etc.

3. Class C : Best Effort Class with no QoS requirements.

Class A of NASPI uses our Class A queue, Class B of NASPI uses our Class

B queue and Class C, D, E of NASPI share our Class C queue. Hence, we

will assume queuing model consisting of three queues at each PGW, servic-

ing traffic classes A, B, C. Queues are maintained per-class at the Overlay

Router/Phasor Gateway.

4.5 Traffic Model

Each flow f in the NASPInet will be characterized by parameters: minimal sampling rate,

maximum sampling rate, reserved rate, peak sample size, and average sample size.

1. MinRate - the threshold rate below which the flow should not decrease.

2. MaxRate - the ceiling rate above which is considered to be violating

the registered condition.

3. Reserved rate - the rate reserved along the path of overlay routers by

the broker.
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4. Peak Sample Size - The maximum size of the compressed data packet

5. Avg. Sample Size - The average size of the compressed data packet

Each flow originates at the substation, and is generated by sensing devices

such as PMUs (each sensing device is called a publisher). Each flow is de-

livered to a control center that subscribed to receive corresponding PMU

sensory data.

4.6 Flow Correlation

Correlation of flows is policy dependent. We consider the spatial correlation

policy in which different kind of flows (HRT, LRT, BE) that come in from the

same substation have certain amount of redundancy among them in terms of

the information they carry to the control center.

4.7 Problem Description

Real-time guarantees of PMU flows can be violated, when transient conges-

tion occurs in the NASPInet. Transient congestion occurs during short term

unexpected traffic changes when critical flows do not get sufficient band-

width, which results in violation of end-to-end delay guarantees and packet

drops .

Deviations/congestion of traffic can be caused by:

1. Variable compression of the PMU data or other sensory data (e.g.,

surveillance video), causing variable bit rate traffic.

2. Increased sending rate of real-time (RT) PMU flows due to unexpected

critical event/observation in their sensory space and causing changed

15



traffic shape of RT flows,

3. Changing demands on real-time traffic requested by control centers

(subscribers) due to extended power grid state analysis, causing changes

in traffic shapes of RT flows.

For example, in Figure 1.1, if one of the PMU sensors in utility A increases

its sampling rate upon observing a critical event, it introduces more traf-

fic into the NASPInet than reserved for it. It is important to stress that

current WAN management/data plane related techniques like GridStat do

not support fast reaction to temporary, short term, and transient changes in

traffic. The current QoS broker-based systems[7] yield QoS guarantees dur-

ing the stable state, but when congestion happens, global adaptation takes

place, i.e., the QoS brokers are contacted and overlay routers wait for QoS

broker’s response, i.e., until new routing tables/reservations are setup. The

time interval between a congestion notification, request for action, and bro-

ker response is non-negligible and within this interval transient congestion

occurs and real-time PMU flows with their delay requirements are not pro-

tected, i.e., violation of deadlines and packet drops due to deadline misses

occur.

The qualitative comparison between the system that does only global adap-

tation(waiting for QoS broker’s response) with the system that performs

local(Cooperative Congestion Control) and global adaptation is shown in

Figure 4.4. We argue that, when only global adaptation is done, during

transient congestion state all the class flows( RT and BE) suffer. Suffering

can imply missing deadlines, getting dropped etc i.e., the legally received

packet rate suffers. Legal packet is the one received within the end-to-end

latency bound. But when our local adaptation is used along with the global

16



adaptation the real time flows never suffer at the expense of best effort flows

which are explicitly notified to slow down so as to decrease their dropped

number of packets.

Figure 4.4: Qualitative comparison of global adaptation and local+global
adaptation

Hence, we need an approach that will protect real-time PMU flows in

NASPInet when transient congestion occurs, and the current reservations

cannot handle the increased and changing traffic load.
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CHAPTER 5

APPROACH

We propose a Cooperative Congestion Control Framework for the NASPInet

data bus to solve the above described problem. The solution is achieved by

introducing a) Multiple service class queueing, b) Cooperative real-time flow

scheduling, and BW reassignment and c) Cooperative coordination and back

pressure approaches among neighboring nodes to counter the transient con-

gestion state. The multiple service classes queueing will allow us to differenti-

ate treatment among the service classes A, B, C and use different scheduling

policies to respond to congestion situation and protect traffic in real-time

classes A and B. Cooperative real-time scheduling and bandwidth reallocation

utilizes the fact that certain flows are cooperative and correlated, containing

information about a shared physical space. Hence, the group of the corre-

lated and cooperative real-time flows can help each other, i.e., bandwidth to

the LRT and BE flows can be reassigned and lowered to protect the HRT

flows at the overlay router/PGW. Cooperative coordination allows to expand

the protection of RT flows during the congestion to a broader area, inform-

ing neighboring overlay router/PGW and/or sources about the experienced

congestion and ask them to (a) slow down their traffic towards the congested

router, and (b) apply cooperative RT scheduling and BW reallocation at

their nodes as well.

Our framework mainly constitutes two components.

1. Designing the overlay router/PGW units that does prioritizing of flows,
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real time packet scheduling, bandwidth reassignment adaptation.

2. Congestion notification of the low priority flows to the upstream gate-

ways or overlay routers that are propagated till the particular sender

which in turn decreases its rate.

5.1 Overlay Router Design

Cooperative real-time flow scheduling, BW assignment and multiple-service

class queueing need differentiating the flows at the overlay router and schedul-

ing real-time flows based on their packet deadlines and priority. The overlay

router achieves flow differentiation with three major components as shown in

Figure 5.1. The Execution unit performs cooperative real time scheduling on

multi-service-class queues. The Adapter unit executes bandwidth allocation

and the congestion notification protocol to achieve cooperative coordination

among the neighbors. The Controller unit acts as the central component

that does all setup activities. The main components in the overlay router

are as shown in the figure 5.1 which are.

Figure 5.1: Design Components

1. Controller

2. Data Connection Threads

3. Execution

19



4. Adapter

5.1.1 Controller

This central component is responsible for creating adapter, execution and

connections components. It also maintains the metadata, reservation infor-

mation about the data flows obtained from its QoS broker during the flow

set up time. All communication with the QoS broker happens through the

controller unit. Metadata includes the information about correlated data

flows. For example, in Figure 5.3, flows f1, f2, f3 are the HRT, LRT, BE

flows generated from the same substation (i.e., they are correlated). Flows

k1, k3 are HRT, BE flows generated from another substation.

5.1.2 Data Connection Module

This unit handles the connections associated with each publisher-subscriber

flow (e.g., Utility A PMU - Monitoring center 1 as shown in Figure 1.1) at

the overlay router.

5.1.3 Execution

Figure 5.2: Execution Component

Execution unit (Figure 5.2) implements the real-time flow scheduling al-
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gorithms and the multiple service class-based queuing. Flows are prioritized

depending on their service class (Real time over BE). We introduce the sub-

components of the execution unit as:

1. Packet Classifiers

2. Queueing Strategies

3. Link Scheduler

4. Estimator

Let us describe in detail the subcomponents of the execution unit.

Packet Classifier: We have our own classifier which inspects the incoming

packet’s classid/flowid/source address and places packets into the appropri-

ate service class queue to ensure its QoS requirements (latency, loss rate

and throughput). Classifier is pre-notified with the types of flows and the

queue corresponding to it. So the classifier simply does a look up into the

precomputed table and decided which queue the packets needs to go into.

Queuing Strategy: As described earlier, there are three classes of flows that

can exist in the system. Class A and B have queues buffering real time flows.

In these classes we need to consider the deadline of packets while dequeuing

those queues. We use an Earliest Deadline F irst (EDF )[9] strategy in the

enqueue/deque functions for the flows of the Class A and B queues. Class C

has no real-time requirements and hence it is a simple FIFO queue.

Link Scheduler: This scheduler is called when the network interface hard-

ware is ready to send the next packet into the network. The outgoing

link bandwidth is shared between all classes[14]. Link Scheduler runs a

Weighted Round Robin scheduling policy with weights being the reserved

link BW share for each class. For example, Class A queue may get 60% of
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link BW, Class B 30% and Class C 10% as shown in Figure 5.3. Some of the

link sharing and scheduling algorithms include Class-Based Queuing[14], [20],

Hierarchical-Fair Service Curve Algorithm[23], [21]. By allowing isolation be-

tween realtime and best effort traffic in cooperation with packet scheduling

algorithms that give priority to the real-time traffic, controlled link-sharing is

a key component in enabling deployment of priority based packet scheduling

algorithms designed to meet the end-to-end service requirements of real time

traffic.

Estimator: The estimator determines packet arrival rate and bandwidth

usage for each class/flow over a period. Bandwidth usage is estimated by

calculating the sent amount of data over a period. Packet arrival rate is

calculated using Exponential Weighted Moving Average (EWMA) over the

queue size. The two key parameters of the estimator are the instantaneous

and history weightage for the estimator and the frequency with which the

estimator updates the rate of each class/flow. Let s be the size of the packet

in bytes, let b be the link-sharing bandwidth allocated to the class/flow in

bytes per second. The algorithm is shown in Algorithm 1.

Algorithm 1 Estimation Algorithm

Require: Initialization
Initialization:
period⇐ windowsizeinseconds
w ⇐ weight, 0 ≤ w ≤ 1
s⇐ packetsize
Avg rate⇐ b(inbytespersecond)
Iteration:
for each period do
N ⇐ numberofbytessent
M rate⇐ N/period
Avg rate⇐ (1− w) ∗ Avg rate + w ∗M rate

end for
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Figure 5.3: Class Hierarchy at the Overlay Router

5.1.4 Adapter

Adapter is the primary component where the BW reassignment algorithm

and Cooperative coordination protocol reside. Its main responsibilities in-

clude

1. Maintain the link sharing queue hierarchy and update statistics peri-

odically

2. Adapt to any transient congestion occurrence by bandwidth reassign-

ment

3. Communicate with the adapters of other nodes notifying them about

the new rate (BW) assignments.

Class hierarchy Structure: Adapter maintains a class hierarchy struc-

ture(Figure 5.3) corresponding to each outgoing link. This structure does the

book-keeping of bandwidth shares, usage, drops, backlog, demand, priority

etc. per each flow and per each class (e.g., for f1, f2, f3, k1, k3 flows and

their HRT, LRT, BE classes membership).

1. Bandwidth shares - Flow-wise and Class-wise reserved bandwidth.
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2. Usage - Flow-wise and Class-wise bandwidth usage.

3. Demand - Flow-wise and Class-wise bandwidth demand.

4. Priorities - High Real time - 0, Low Real time -1, Best Effort - 2.

In the above Figure 5.3, the link-sharing class hierarchy structure specifies

the desired policy in terms of the division of bandwidth for a particular link.

For example, the link is shared by a number of high real-time, low-real time

and non-real-time traffic classes and flows. The high real time flows f1 and

k1 are represented as the leaf nodes under the parent High real time class.

In this, the class HRT flows contains delay-sensitive PMU real time traffic.

Similarly the class LRT also has flows that are delay sensitive and real time

but slightly less requirements than the HRT class flows. The BE class flows

are the best effort flows with no guarantees.

1. Each class/flow is characterized by

(a) assured rate AR (the reserved rate).

(b) minimum rate MR(the minimum threshold rate of the class/flow).

(c) ceil rate CR (above which the rate cannot increase)

(d) priority P (HRT>LRT>BE and the flows of the same class have

the same priority)

(e) actual rate R (demand).

2. Each class/flow will have a state associated with it, based on the class

and flow characteristics such as the AR, MR, CR and R parameters,

specified above. Each class/flow can be in one of the three states:

(a) congestion state if AR<R<=CR.
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(b) stable state if MR<R<=AR and

(c) minimal threshold state if R=MR.

For the adapter of the congested overlay router to control the transient

congestion, it needs to estimate the congestion locally, perform BW reas-

signment and coordinate with adapters (section 5.2) of other nodes.

Local Congestion Estimation and BW Reassignment:

Overlay Router/PGW estimates congestion locally from the state of each

flow sharing its outgoing BW. When all the flows at an overlay router/PGW

are in stable state or min threshold state, the router/PGW node is in sta-

ble state without any congestion. When any of the flows is in congestion

state, the router/PGW node’s adapter does congestion control through BW

reassignment.

Our BW reassignment algorithm, shown in Algorithm 2, considers all

flows which are in congested state. The BW reassignment algorithm selects

a list of victim LRT & BE flows for each HRT flow i (i.e., LRT & BE flows

whose BW allocation is reduced in order to increase BW and protect real-

time performance of the HRT flow i). The list of victim flows for HRT flow

i is selected based on the priority P of flows and the correlation among the

flows and kept in the data structure M(i). The correlated flows information

is obtained from the controller unit. For example, from Figure 5.3, M(f1)

contains f3, k3, f2 i.e., when f1 gets congested, the flows in M(f1) transfer

their BW share to f1. BE flows k3 and f3 are preferred as victim BE

flows for HRT f1 over LRT f2. f3 is preferred over k3 as f1 and f3 are

correlated. For each HRT congested flow i (in the order of class priority),

the BW shares of LRT & BE victim flows in M(i) (ensuring Min Threshold

rate), are transferred to satisfy HRT flow i’s need.
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For example, let the assured rate (AR) for the flows be f1 - 20Mbps, f2 -

10Mbps, f3 - 10Mbps, k1 - 20Mbps and k3 - 5Mbps. Let the Min threshold

rate for the flows be f1 - 10Mbps, f2 - 5Mbps, f3 - 2Mbps, k1 - 10Mbps

and k3 - 2Mbps. Now, if f1 increases its rate to a higher rate 25Mbps, the

bandwidth needs to be reassigned to satisfy the increased demand of HRT

flow f1. needed bandwidth is 5Mbps. M(f1) contains the ordered victim

flow lost for flow f1. To satisfy the increased demand, we first look at the

victim flow f3. f3 currently has a share of 10Mbps and its min threshold is

2Mbps. Therefore, we transfer 5Mbps share from f3 to f1. The new rates

now become f1 - 25Mbps, f2 - 10Mbps, f3 - 5Mbps, k1 - 20Mbps and k3 -

5Mbps.

Algorithm 2 Bandwidth Reassignment Algorithm

for each HRT flow i in congested state (priority order) do
for each victim flow b in M(i) do
needed⇐ i.R− i.AR
oldb = b.AR
b.AR⇐ max(b.MR, b.AR− needed)
needed− = (oldb− b.AR)
i.AR+ = (oldb− b.AR)
if needed ≤ 0 then
break

end if
end for

end for

Congestion Notification Protocol (section 5.2) informs neighboring adapters

about the changed BW shares of all flows.

5.2 Congestion Notification Protocol

We consider an ATM-like back pressure[18] rate control algorithm in our CCC

framework. When the publisher (PMU) increases its sending rate pertaining
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to a critical event, it introduces more traffic into the network than reserved

for its flow. Depending on the availability of excess BW in the downstream

PGWs/overlay routers, some nodes can experience congestion because of the

increased PMU flow rate. The congested nodes control the congestion by

BW reassignment. With BW reassignment the high priority flow gets re-

quired BW share, while the low priority victim flows get congested. By this

we protect the real-time guarantees of the PMU flows. Explicit congestion

notification to the low priority victim flows’ senders takes the system back

into stable state. This notification is done through the cooperative protocol

between each nodes’ adapter. Whenever, at a node congestion is estimated

and BW is reassigned, the adapter of the node sends a control packet to its

upstream node with the flows’ new weights. The adapter of the upstream

node triggers its BW reallocation according to the new weights in the con-

trol packet and notifies its upstream adapter about the flows. This proceeds

on till the sender (BE App) which responds to the control packet by de-

creasing/increasing its sending rate. We use TCP for the reliable delivery of

control packets and UDP for the data packets (as we do not need retrans-

missions, acknowledgements etc.).

Let us explain the protocol with the help of an example in Figure 5.4.

When a critical event occurs in Utility A, the A-HRT PMU increases its

sending rate. This leads to congestion at the overlay router that is shared

between Utility A and Utility B flows. The overlay router through its BW

reassignment algorithm when identifies congestion, selects victim flows and

recalculates the link BW sharing weights. Based on the spatial correlation

policy A-BE is selected as the victim flow. Adapter of the overlay router noti-

fies the new weights to its cooperative upstream adapter (PGW-A). PGW-A

responds to the notification by reassigning its outgoing BW and communicat-
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Figure 5.4: Congestion Notification Protocol

ing with the cooperative upstream sender A-BE App with the control packet.

The sender A-BE App reacts by decreasing its sending rate. Similarly when

a subscriber (CC) wants to receive A-HRT PMU - CC flow at increased rate

it notifies to its PGW that follows the above steps, with reassignment done

along the path and the senders (PMU and App) notified about their new

sending rates.
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CHAPTER 6

IMPLEMENTATION

6.1 Overview

We have implemented the overlay router components and the notification

protocol on linux machines with object-oriented C++ programming lan-

guage. The requirement is to have a kernel version >= linux 2.6.25 to ensure

all kernel modules exist. iproute2 package’s tc modules are used to interact

with the kernel. These modules help in setting up the kernel network queue-

ing parameters and classifier filters. We use a hierarchical token[22] bucket

approach rate limit each flow’s bandwidth usage to its reserved rate. Ker-

nel support is needed for packet real time scheduling and BW reassignment.

An image of the Kernel multiple service queues is created which is used by

the user module to periodically query the statistics, used for the Bandwidth

reassignment.

The Phasor Gateway/Overlay Router implementation diagram is shown in

Figure 6.1 Now let us discuss the implementation of each component men-

tioned earlier.

6.2 Controller

This is the main unit that acts as a parent thread and creates all the other

unit threads. The main responsibilities include:
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Figure 6.1: Phasor Gateway Implementation

1. Setting up connections with other nodes and broker.

2. Creating the Kernel queues and filters.

3. Reserving the bandwidth and setting up the overlay routing tables.

4. Creating other units.

5. Storing the metadata of the flows.

6. Alarm Messages to broker.

7. Starting the data connection threads one for each connection.

During the system initialization, Controller units are created on each ma-

chine. Control connections are setup between QoS broker and the controller

module of each Phasor Gateway and Overlay router. When the flow set up

decision is done by the brokers of the management plane, brokers inform all

the controllers of the gateways/routers in the flow path about the reserva-

tion, QoS , flow correlation metadata etc. Controller starts other modules on

its machine and sets up the reservation tables on per-flow basis. Metadata of
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the flows is the information about the spatial correlation about the same sub-

station flows. Controller also maintains information about the Min Threshold

rate of each registered flow and the previous hop overlay node of each flow.

This information, obtained from the broker, is used by the adapter module

for bandwidth reassignment and congestion notification during congestion.

When the BW reassignment algorithm fails to control the congestion alarm

messages are sent to the broker as local adaptation is no longer possible. For

real-time flow scheduling, we need to set up the kernel queues and filters.

6.3 Data Connection Module

This modules handles the data flows. Currently there is one thread that im-

plements this module. This thread is responsible for listening for data on the

UDP port, and send the data through class-specific (HRT, LRT, BE) kernel

queue. We plan to extend this module with multi-threaded design. We want

to have one thread that handles each flow connection. The multi-threaded

implementation helps in further extensions of the framework with Dynamic

Soft Real Time scheduler (DSRT). With DSRT[9] the CPU scheduling can

be prioritized so that the RT Class A flows get the CPU preference over Class

B over BE Class C.

6.4 Execution

Execution unit implements the kernel networking modules. Let us first in-

troduce the iproute2 package and the qdisc scheduler.
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6.4.1 Overview of Packages

iproute2 & qdisc:

qdisc: A qdisc is a scheduler. Every output interface needs a scheduler of

some kind, and the default scheduler is a FIFO. Other qdiscs available under

Linux will rearrange the packets entering the scheduler’s queue in accordance

with that scheduler’s rules. The qdisc is the major building block on which

all of Linux traffic control is built, and is also called a queuing discipline.

There are different qdiscs - root qdisc for the egress and ingress qdisc. Each

interface contains both. The primary and more common is the egress qdisc,

known as the root qdisc. It can contain any of the queuing disciplines (qdiscs)

with potential classes and class structures. Traffic transmitted on an interface

traverses the egress or root qdisc.

iproute2 : iproute2 is a suite of command line utilities which manipulate

kernel structures for IP networking configuration on a machine. Of the tools

in the iproute2 package, the binary tc is the only one used for traffic control.

As tc interacts with the kernel to direct the creation, deletion and mod-

ification of traffic control structures, the binary needs to be compiled with

support for all of the qdiscs you wish to use. In particular, for the classful

qdiscs. The classful qdiscs can contain classes, and provide a handle to which

to attach filters.

Usage: tc [ OPTIONS ] OBJECT { COMMAND | help }

where OBJECT := { qdisc | class | filter }

OPTIONS := { -s[tatistics] | -d[etails] | -r[aw] }

As shown above tc can be used to create qdisc, class and filter. It can also

be used to obtain the statistics of the queuing module.
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6.4.2 Classifiers

Classifiers sort or separate traffic into queues. Classifying is the mechanism

by which packets are separated for different treatment, possibly different

output queues. During the process of accepting, routing and transmitting

a packet, a networking device can classify the packet a number of different

ways. In our system, packets contain the class information such as High

Real Time(HRT), Low Real Time(LRT) and Best Effort(BE). Based on this

information classifiers puts the packet into the appropriate class queue of

the root qdisc. Classification can also be done based on Source port, IP,

Destination port, IP.

Filters are one of the key elements of traffic control. Filters execute the role

of classifiers. Linux filters allow the user to classify packets into an output

queue with either several different filters or a single filter. Filters can be

attached either to classful qdiscs or to classes, however the enqueued packet

always enters the root qdisc first. After the filter attached to the root qdisc

has been traversed, the packet may be directed to any subclasses (which can

have their own filters) where the packet may undergo further classification.

Filter objects, which can be manipulated using tc, can use several different

classifying mechanisms, the most common of which is the u32 classifier. The

u32 classifier allows the user to select packets based on attributes of the

packet.

6.4.3 Queuing Strategies

Our main goal is to do priority scheduling with certain kind of bandwidth

guarantees for all classes. We use a Hierarchical Token Bucket (HTB) filter

kind of approach. HTB[22] uses the concepts of tokens and buckets along
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with the class-based system and filters to allow for complex and granular

control over traffic. With a complex borrowing model, HTB can perform a

variety of sophisticated traffic control techniques. One of the easiest ways to

use HTB immediately is that of shaping. This queuing discipline allows the

user to define the characteristics of the tokens and bucket used and allows

the user to nest these buckets in an arbitrary fashion. When coupled with a

classifying scheme, traffic can be controlled in a very granular fashion.

Now we would explain the creation of the HTB root qdisc, and associating

classes with it.

Usage: tc qdisc add dev eth0 root htb [default N] [r2q N]

Usage: tc class add ... htb rate R1 burst B1 [prio P]

[slot S] [pslot P] [ceil R2] [cburst B2]

[mtu MTU] [quantum Q]

Let us explain each of the parameters passed to the above commands.

default: An optional parameter with every HTB qdisc object, the default

default is 0, which cause any unclassified traffic to be dequeued at hardware

speed, completely bypassing any of the classes attached to the root qdisc.

rate: Used to set the minimum desired speed to which to limit transmitted

traffic. This can be considered the equivalent of a committed information rate

(CIR), or the guaranteed bandwidth for a given leaf class.

ceil: Used to set the maximum desired speed to which to limit the trans-

mitted traffic. The borrowing model should illustrate how this parameter is

used. This can be considered the equivalent of ”burstable bandwidth”.

burst: This is the size of the rate bucket (see Tokens and buckets)[22].

HTB will dequeue burst bytes before awaiting the arrival of more tokens.
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cburst: This is the size of the ceil bucket (see Tokens and buckets)[22].

HTB will dequeue cburst bytes before awaiting the arrival of more ctokens.

quantum: This is a key parameter used by HTB to control borrowing.

Normally, the correct quantum is calculated by HTB, not specified by the

user. Tweaking this parameter can have tremendous effects on borrowing

and shaping under contention, because it is used both to split traffic between

children classes over rate (but below ceil) and to transmit packets from these

same classes.

r2q: Also, usually calculated for the user, r2q is a hint to HTB to help

determine the optimal quantum for a particular class.

mtu: Typical size of the packet that the underlying network can send.

prio: Priority of the Class.

Now we explain the actions associated with each command that creates

qdisc, class and filter.

tc qdisc add (1) dev eth0 (2) root (3) handle 1:0 (4) htb (5)

1. Add a queuing discipline. The verb could also be delete.

2. Specify the device onto which we are attaching the new queuing disci-

pline.

3. This means ”egress” to tc. The word root must be used, however. An-

other qdisc with limited functionality, the ingress qdisc can be attached

to the same device.

4. The handle is a user-specified number of the form major:minor. The

minor number for any queueing discipline handle must always be zero

(0). An acceptable shorthand for a qdisc handle is the syntax ”1:”,

where the minor number is assumed to be zero (0) if not specified.

35



5. This is the queuing discipline to attach, HTB in this example. Queuing

discipline specific parameters will follow this. In the example here, we

add no qdisc-specific parameters.

Above was the simplest use of the tc utility for adding a queuing discipline

to a device. Here’s an example of the use of tc to add a class to an existing

parent class.

tc class add (1) dev eth0 (2) parent 1:1 (3) classid 1:6(4) htb(5)

rate 256kbit (6) ceil 512kbit (7)

1. Add a class. The verb could also be delete.

2. Specify the device onto which we are attaching the new class.

3. Specify the parent handle to which we are attaching the new class.

4. This is a unique handle (major:minor) identifying this class. The minor

number must be any non-zero (0) number.

5. Both of the classful qdiscs require that any children classes be classes

of the same type as the parent. Thus an HTB qdisc will contain HTB

classes.

6. Class specific reserved rate.

7. Class specific maximum rate.

tc filter add (1) dev eth0 (2) parent 1:0 (3) protocol ip (4)

prio 5 (5) u32 (6) match ip port 22 0xffff (7)

match ip tos 0x10 0xff (7) flowid 1:6 (8)
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1. Add a filter. The verb could also be delete.

2. Specify the device onto which we are attaching the new filter.

3. Specify the parent handle to which we are attaching the new filter.

4. Specify to match only the IP packets.

5. The prio parameter allows a given filter to be preferred above another.

6. This is a classifier, and is a required phrase in every tc filter command.

7. These are parameters to the classifier. In this case, packets with a type

of service flag (indicating interactive usage) and matching port 22 will

be selected by this statement.

8. The flowid specifies the handle of the target class (or qdisc) to which

a matching filter should send its selected packets.

Control Queue

Figure 6.2: Control and Data Packet Queuing

We certainly want control packets to be prioritized over any of the data

packets. We use HTB class-based queueing for the data packets. If there is

a control packet waiting for the service, it should be the first packet to be

served. Hence we use a priority queueing between the Control queue and
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the HTB root qdisc. In the Figure 6.2 the enqueue and dequeue take place

following the priorities and the rules of the class-based queueing used.

Queue Buffer

The size of the queue can be controlled by the tc commands. Certainly there

is a tradeoff between end-to-end latency and the buffer overflow drop rate. If

we maintain large queues than that can be serviced, the packets at the end

of the queue experience large delays resulting in missing real time latency

deadlines. Hence, we adapt the queue size to the rate of the class using the

queue. We know that each class is bounded in its bandwidth usage. Hence,

if we maintain a large queue, but with Random Early Detection (RED) it

certainly at the midpoint of the trade-off between drop rate and latency.

The packets that need to be at the head of the queue are Earliest Deadline

First Packets for the real-time queues and First-in Packets for the best effort

queues. Hence, as shown in Figure 6.2 the Class A and Class B queues can

use EDF routines. We hook these routines from the iEDF module of the

iDSRT.

6.4.4 Link Scheduler

Figure 6.3 shows the flow of dequeue on the data packets at any Overlay

Router/Phasor Gateway. When the network interface hardware is ready to

send a packet dequeue routine is called on the root qdisc. Based on the

Class hierarchy and the reserved rate parameters, one of the classes is called

with the dequeue routine. The class in turn calls the dequeue routine on

the leaf queue which holds the actual packets. As mentioned previously

the Real Time queues’ enqueue/dequeue routines can be replaced with the
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Figure 6.3: Link Scheduler

EDF routines and the Best Effort queue executes the default first-in-first-out

routines.

6.4.5 Estimator

We implement a conservative estimator. As, we are dealing with transient

congestion and our goal is to protect the real-time guarantees of PMU flows

during this small period, the estimator needs to consider the recent events

over the history. Therefore, our weight is chosen in such a way that it gives

more weightage to the instantaneous component and less weight to the his-

tory component while estimating the sent rate and backlogged data of each

flow.

6.5 Adapter

For the adapter of the congested overlay router to control the transient con-

gestion, it needs to estimate the congestion locally, perform BW reassignment

and coordinate with adapters of neighboring nodes.

39



6.5.1 Local Congestion Estimation

Congestion is estimated locally from the state of each flow sharing its out-

going BW. The state of the flow is dependent on the flow characteristics like

AR, MR, CR and R. This information about the reserved rate, minimal

rate, ceil rate and the incoming rate for each flow can be obtained from

the kernel network queues. We use the tc interface to obtain the statistics,

parse it and store it in the above data structure (image of the kernel network

queue), which is used for the congestion estimation.

tc -s show class dev eth0

The above command shows statistics of the entire output interface queues.

Our perl scripts extract the needed information and store each class’ infor-

mation into its structure as shown below.

Class Hierarchy Image

struct stats_class{

uint32_t class_id;

uint32_t flow_id;

long sent_bytes;

long last_sent_bytes;

struct timeval tv_last;

struct timeval tv_now;

uint32_t assured_rate;

uint32_t ceiling_rate;

uint32_t dropped_packets;

uint32_t last_dropped_packets;

uint32_t usage_rate;
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uint32_t last_usage_rate;

uint32_t usage_pps_rate;

uint32_t last_usage_pps_rate;

uint32_t last_backlog_bytes;

uint32_t backlog_bytes;

uint32_t last_backlog_packets;

uint32_t backlog_packets;

};

1. class id : The identifier of the class used to identify HRT, LRT and BE

classes.

2. flow id : A unique global identifier to identify the flow in the system.

3. sent bytes&last sent bytes : Calculates the amount of data sent over the

last period.

4. assured rate: Current Reserved Bandwidth.

5. dropped packets&last dropped packets : Calculates the number of dropped

packets of this class/flow over the last period.

6. backlog packets&last backlog packets : Calculates the number of back-

logged packets of this class/flow over the last period.

7. backlog bytes&last backlog bytes : Calculates the number of backlogged

bytes of this class/flow over the last period.

8. usage rate: BW usage rate in bytes per sec (Estimated using EWMA).

9. usage pps rate: BW usage rate in packets per sec (Estimated using

EWMA).
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Congestion over the last period of time is estimated using the number of

dropped packets, backlogged packets, sent bytes , assured rate etc. from the

above data structure over the last period of time. Time period is taken to

be 1 sec. i.e., For every 1 sec, the above data structure is filled with new

data/statistics about the state of the flows, queues in the kernel and then

the congestion estimation takes place.

Once there is congestion estimated, in at least one of the HRT flows,

Bandwidth reassignment is to be done.

6.5.2 Bandwidth Reassignment

Bandwidth Reassignment Algorithm needs the following inputs

1. Correlation of flows metadata data structure from the controller mod-

ule.

2. The Class Hierarchy image data structure with the statistics/state of

the kernel network queues, flows.

3. Data structure that stores the minimal threshold rate for each class/flow.

BW Reassignment Algorithm executes the following steps.

1. All congested HRT flows are considered for treatment in the class pri-

ority order, flows that belong to same class are considered in arbitrary

order.

2. For each congested HRT i, it first selects the victim flows. Victim

flow selection is dependent on the priorities of flows and the correlation

among the flows. i.e., The selection starts with the lowest priority flows,

and from flows with the same priority, the one that is most correlated

with the congested HRT flow is selected as the preferred victim.
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3. For each victim flow selected above (corresponding to congested HRT

flow i), it decreases the BW share of the victim flow, making sure

that the min threshold rate is obeyed. This share is transferred to the

congested HRT flow i.

4. The above step repeats for all the victim flows corresponding to the

congested HRT flow i, till the need of HRT flow i is satisfied.

5. Repeats steps 2-4 for all the congested HRT flows.

Once the flows have their new weights the tc qdisc/class interface is used

to change the parameters of the kernel network queues. These new weights

of flows are to be coordinated to the neighboring nodes which is done by the

congestion notification protocol.

6.6 Congestion Notification Protocol

Congestion Notification Protocol will require the data structure that provides

information about the previous hop Overlay Router/PGW corresponding to

each flow. This structure is available with the controller module as it the

one responsible for initial flow set-up phase. Once the BW reassignment

algorithm transfers the BW allocation of low-priority victim flows to the

congested HRT flows, the notification protocol will extend the congestion

information to the neighboring nodes and they can cooperative coordinate

among themselves to control congestion and protect the real-time guarantees

of HRT PMU flows.

We have seen that a control queue is maintained, which is different from

the class-based data queues. This control queue is given the highest priority

so as to make sure that the control packets are sent as quickly as possible.

43



TCP is used for sending the control packets as it needs to be reliable.

The receiving overlay router/PGW of the control packet, even though con-

gestion is not estimated locally, obeys the control packet, executes the band-

width reassignment algorithm and runs the notification protocol to notify its

neighboring nodes.
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CHAPTER 7

EVALUATION

Figure 7.1: Test Scenario

Our testbed constitutes 2 substations with 3 sensors each(1 HRT PMU,

1 LRT PMU, 1 BE App), three phasor gateways, one overlay router and 1

control center as shown in Figure 7.1.

7.1 Scenario

We evaluate the Cooperative congestion control framework in the above test

scenario where utility A and utility B with 3 sensors each are connected

to the Monitoring center via the NASPInet WAN. Congestion can occur at
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Phasor Gateways(PGWs) and Overlay Routers.

7.2 Parameters

For simplicity all the sensors generate sample packet of average size 260

bytes (phasor fields and digital channel fields)[1]. Service class queues are

maintained at PGWs/overlay routers to hold 20 data packets of each flow.

The sensors can operate at a frequency ranging from 1Hz to 60Hz. The

minimum threshold bandwidth for the classes are HRT - 5200 Bytes, LRT -

2600 Bytes , BE - 600 Bytes. End-to-end deadlines assumed for Class A HRT

flows is 50ms and Class B LRT flows is 100 ms. The broker response/global

adaptation time is taken to be 60 sec (the goal is to protect HRT flows during

this period when the system is not in stable state).

7.3 Test

At t=0 all flows start with an initial frequency of 20Hz. At t=40 sec the

Utility A’s HRT PMU sensor increases its frequency to 40Hz. Later at t=60

sec Utility B’s HRT PMU sensor increases its frequency to 40 Hz. At t=80 sec

Utility A’s HRT PMU and Utility B’s HRT PMU increase their frequencies

to 50 Hz. Finally, at t = 90 sec Utility A’s HRT PMU and B-HRT PMU

increase their frequencies to 60 Hz.

7.4 Discussion

Figure 7.2 , 7.3, 7.4 show the latency, throughput and drop rate when the

cooperative congestion control framework is not used i.e the case just with

global adaptation waiting for decision from the broker. Figure 7.5 , 7.6, 7.7
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Flow 0− 40 40− 60 60− 80 80− 90 90− 100
A-HRT 0% 50% 50% 40% 33%
A-LRT 0% 0% 0% 0% 0%
B-HRT 0% 0% 50% 40% 33%
B-LRT 0% 0% 0% 0% 0%

Table 7.1: Percentage of Deadline Missed Packets without Cooperative
congestion control framework

Flow 0− 40 40− 60 60− 80 80− 90 90− 100
A-HRT 0% 4% 0% 1.8% 0%
A-LRT 0% 0% 0% 1% 0%
B-HRT 0% 0% 3% 1% 0%
B-LRT 0% 0% 0% 1% 0%

Table 7.2: Percentage of Deadline Missed Packets with Cooperative
congestion control framework

show the same with cooperative congestion control in place. Table 7.1 shows

the percentage of real-time packets with respect to sent number that missed

their deadlines without the framework. Table 7.2 shows the percentage of

real-time packets that missed their deadlines with the framework. Table 7.3

shows the percentage of real-time packets that are dropped due to buffer

overflow without the framework. Table 7.4 shows the percentage of real-time

packets that are dropped due to buffer overflow with the framework. The sent

number of packets is the sum of overflow dropped packets, deadline missed

packets and legally sent packets.

From t=0 to t=40 sec all the flows are in stable state. At t=40 sec the

A-HRT flow doubles its frequency. When our framework is not used, all the

extra packets above reserved rate are dropped and the also the deadlines

of the sent packets are missed as shown in TABLE 7.1. When the CCC

framework is used, A-BE and B-BE are selected as the victim flows and BW

reassignment/congestion notification happen which dramatically decreases
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Flow 0− 40 40− 60 60− 80 80− 90 90− 100
A-HRT 0% 50% 50% 60% 66%
A-LRT 0% 0% 0% 0% 0%
B-HRT 0% 0% 50% 60% 66%
B-LRT 0% 0% 0% 0% 0%

Table 7.3: Percentage of Buffer Overflow dropped packets without
Cooperative congestion control framework

Flow 0− 40 40− 60 60− 80 80− 90 90− 100
A-HRT 0% 0% 0% 0% 16%
A-LRT 0% 0% 0% 0% 0%
B-HRT 0% 0% 0% 0% 16%
B-LRT 0% 0% 0% 0% 0%

Table 7.4: Percentage of Buffer Overflow dropped packets with Cooperative
congestion control framework

the deadline miss rate and the overflow drop rate. Later at t=60 sec the

B-HRT flow doubles its frequency. B-BE is selected as the victim flow and

BW reassignment/notification occurs. Both the A-BE and B-BE flows are

decreased to their minimum threshold 600 Bytes. At t=80 sec both A-HRT

and B-HRT increase their frequency to 50 Hz. In the case of no CCC frame-

work usage we can see all packets getting dropped due to buffer overflow,

whereas with framework A-LRT and B-LRT are selected as victims. Both

A-LRT and B-LRT reach to their min threshold 2600 Bytes. At t=90 sec

both A-HRT and B-HRT increase their frequencies to 60 Hz. As per the

BW reassignment algorithm there are no more victim flows and hence all the

extra packets get dropped. Finally, at t=100 sec the global adaptation by

the broker happens and the system again goes into stable state. Our CCC

framework made possible to achieve the real-time guarantees of the PMU

flows during the transient instability period (between 40th and 100th sec).
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Figure 7.2: End to end latency, without using the framework
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Figure 7.3: Throughput without using the framework
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Figure 7.4: Dropped packets due to buffer overflow without using
framework
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Figure 7.5: End to end latency, with Cooperative congestion control
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Figure 7.6: Throughput, with Cooperative congestion control
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Figure 7.7: Dropped packets due to buffer overflow with Cooperative
congestion control
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this thesis we presented Cooperative Congestion Control framework to en-

sure real-time guarantees during transient changes in real-time network traffic

from Phasor Measurement Unit (PMU) sensors. The framework utilizes a)

NASPI[17] aligned multiple service class queuing architecture; b) Coopera-

tive real-time flow scheduling and Bandwidth reassignment; c) Cooperative

coordination and back-pressure among neighboring nodes; to yield real-time

PMU data guarantees during transient traffic pattern changes and/or over-

load situations. We have designed and implemented the two main compo-

nents that constitute the framework.

1. Overlay router/Phasor Gateway modules that do prioritizing of flows,

real time packet scheduling, bandwidth reassignment adaptation.

2. Early congestion notification protocol to notify the congestion and re-

assigned bandwidth weights to upstream senders.

In the Phasor Gateway design we use multiple queues one for each service

class, as explained in the NASPI databus specifications. Real time scheduling

and bandwidth reservation for each class is done through the iproute2 inter-

face, which interacts with the kernel queuing modules. Hierarchical token

bucket approach is deployed as the queuing strategy. Our design considered

the cooperative nature of nodes and the correlation between the flows, flows

from same substation are considered to be correlated. Our control proto-
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col runs over TCP and the data connection are maintained over UDP so

as to avoid expensive acknowledgements and unnecessary retransmissions.

Our experiments confirm the real-time flow performance to be better with

the framework in place. Results show that local adaptation (with the CCC

framework) along with global adaptation (QoS broker adaptation) maintains

stability in the system during the transient periods with no QoS violations.

The lessons learnt while working on this framework are a) Using standard-

ized kernel interfaces to modify the kernel is very important so that com-

patibility issues with different versions do not occur. b) Changes to Overlay

Gateway/ Router Modules are feasible, where as enforcing our modules on

physical routers is impractical. c) QoS broker’s support is alone not sufficient

to ensure real-time guarantees of PMU flows during transient instability and

we need local adaptation at the nodes and cooperative control with neigh-

bors. d) Back pressure approaches control congestion very efficiently with

little overhead in smaller networks.

As a part of future work we can add the support of DSRT at the CPU

level to prioritize threads so that threads that handle real-time flows get the

preference. Presently we run our experiments on LAN which is a controlled

environment. It would be interesting to see the performance, metrics like la-

tency, drop rate, BW usage when deployed on large scale public networks like

planetlab. This framework can be integrated with any Wide Area Network

architecture that is designed following NASPI specifications.
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