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Abstract—In this paper, we outline a specific communication
framework to support Direct Load Control programs on the
edge of the power distribution network. We suggest a model
where the arrival process of the smart appliances is made visible
to control centers, forming a cellular Microgrid infrastructure,
through Home Energy Management Systems (HEMS). These
appliances then wait to receive an authorization message before
starting to function. The cell control center uses this information
to choose an optimal departure process that serves the waiting
appliances while minimizing its operational costs. The described
information exchange strategy gives the cell the ability to better
match the load to the available green energy supply and its day
ahead energy bid. We show that this model will allow to increase
the integration of intermittent resources in the power grid, with
modest communication rate requirements.1

I. INTRODUCTION

Currently, power system operators have little control over
the dynamic behaviour of the load. In most areas, the only
possible load modification is load shedding, i.e. an intentional
power outage so that power can be kept in balance in the grid.
In monitoring and predicting the load, the current approach is
sensing the bundled request and accruing statistics to forecast
the future evolution of the demand. With the addition of
appliances like Plug-in (Hybrid) Electric Vehicles (PHEV),
Smart cooling/heating systems, and the introduction of active
loads like discharging EVs or Community Energy Storage
(CES), serving as a buffer or a source of energy, volatility
in the power distribution network can be greatly increased
[1] and thus, traditional prediction techniques will degrade
considerably in performance. Utilities have also been aware
of this fact and they have tried to find ways of matching
consumption with generation by making the load observable,
thanks to Smart meters, whose deployment is referred to as
the Advanced Metering Infrastructure (AMI) [2].

Even with full observability of this volatile load, the current
tradition of having no control over the load’s behaviour is
likely to increase the need for operating reserves for the grid
to function reliably and will increase the price of electricity.
What is envisioned in the so called Smart Grid project is
that certain smart devices like electric vehicles can become
flexible agents distributed across the grid whose demand can
be modified, either in a centralized or a distributed manner, to
integrate the volatile local renewable generation sources in the
system on the edge of the distribution network. One approach
that has been proposed to handle this problem is using Direct

1This work was funded by the UIUC TCIPG Project sponsored by DOE
under the Award DE-OE0000097.

Load Control programs [3], [4], which aim to control part of
the load due to smart appliances directly from a central unit.
For a control center to be able to remotely modify the load,
the smart appliances should be able to communicate with the
control center. But how? What is the data that needs to be
communicated? What is a suitable structure to formulate the
Load Management problem?

We address these questions in this paper. Specifically, the
paper is organized as follows: We will first give an overview
of the related works on load management. In Section II, we
provide a system model that is the basis to determine the
information that is required to reconstruct a portion of the
load in a control center. We investigate a data representation
methodology that can support this infrastructure in Section
III. After we calculate the total amount of delay experienced
by customers participating in a DLC program in a given
interval, in Section, IV-B, we will give a general definition
for the type of optimization required to solve the centralized
scheduling problem. We will discuss possible data gathering
and distribution strategies in section V and finally, in section
VI, we will give numerical results on how a DLC program can
help match a volatile load to the available generation supply.

A. Previous Work

Previous work on load management techniques can be
mainly categorized into one of the following:

• Price-based load control
• Load control through curtailment and scheduling

Price-based load control strategies include time-of use (TOU)
or real-time (RT) pricing techniques. In TOU pricing strate-
gies, the price data is usually decided months or years before
the actual time of use. There have been several studies on
determining these rates, which requires a dynamic model
for the price response of customers, typically derived based
on experiments [5], [6]. On the other hand, in real time
pricing scenarios, the price data is provided only hours before
consumption. TOU and RT pricing have been made possible
through the deployment of the AMI. In both cases, each
customer decides on their energy use pattern individually
given the pricing data. In the case of RT pricing, the need
for an automated system to help the customer in making
these decisions seems apparent. There is, in fact, an extensive
literature emerging on Home Energy Management Systems
(HEMS) [7] [8]. For these systems to operate, the price data is
delivered to the customer and an automation device installed
inside the home will plan the use of appliances given their



power consumption, price data and job deadlines. While these
strategies can alleviate the situation, we think that central load
control may better solve the pressing problem of managing
resources , because of the economy of scale and increasing
flexibility that pooling together resources can warrant.

The second group of load control strategies are usually
applied directly by a control center but require customer
participation. They first emerged in the 90’s and are currently
employed through the so-called Interruptible Load programs
where, upon receiving a notice, the customers turn off some
of their appliances for a pre-determined amount of time (15-
30 minutes). In these programs, a constrained optimization
problem is solved to determine a load curtailment strategy [9],
[10]. In recent years, the deployment of advanced two-way
communication links between the customers and the utility
has attracted attention towards Direct Load Control (DLC)
programs that allow a control center to directly control end-use
appliances. For example, a few papers have attempted in the
past 2-3 years to deal with the problem of centralized electric
vehicle scheduling [11]. This focus on EVs [12], [13] may
be due to the fact that unlike many appliances already used
in a commercial scale by end-use customers, electric vehicles
are yet in their introductory stages and do not yet have fixed
standards. On the other hand, when commercialized, these
appliances will play a huge role on the demand side of the
market and if managed optimally, they can be put to great use
due to the inherent flexibility in their time of use.

Here, we propose a traffic management model for central-
ized load control in a Smart Grid. The smart loads communi-
cate with their HEMS and their information is forwarded to
the Community Energy Management System (CEMS), which
takes on the tasks of scheduling them. A graphical representa-
tion of the communication infrastructure, the decision blocks
and the load reconstruction is given in Fig. 1.

II. MODELING THE TRAFFIC

We assume that H different types of appliances arrive in
the system following non-stationary Poisson arrival processes

aj(t) =
∞∑
i=1

u(t− tai,j), j = 1, . . . , H (II.1)

with u(t) the unit step, tai,j the arrival time the ith appliance
of type j, and an arrival rate of λj(t) for each type of
appliance. Each arrival event has an associated dimensionless
parameter set Ci,j that describes its energy request. These
parameters are assumed to be i.i.d. random variables with a
known stationary distribution f j

C(c), independent of the arrival
times. Each arrival event is modeled by a tuple (j, tai,j , Ci,j).
The uplink information to the cell control is this tuple; upon
its reception, the cell control can map the appliance type and
energy request code (j, Ci,j) one to one with a complex load
phasor gj(t;Ci,j) (in volt-ampere), representing the evolution
of active and reactive power for a type-j load turned on at time
zero. For appliances like EVs Ci,j can be a scalar representing
the number of time units the battery charge lasts, and can be

used to scale the argument of a real pulse, which approximates
well the car charging profile, g(t;Ci,j) ≈ g(t/Ci,j); but, in
general, Ci,j can be quantized vector of Fourier or Wavelet
coefficients, used as a basis expansion to represent the the
known load evolution after activation. To explain more impor-
tant concepts, we look at the simple case of EVs, and a single
scalar parameter Ci,j in g(t/Ci,j).

The ability to schedule the loads means that the control
center has the authority to delay the starting time for each
smart appliance turning on. When the appliance is authorized
to turn on, it is said to depart.2 Hence, these appliances form
a departure process, where tdi,j is the time instant when the
ith appliance of the jth type is authorized to start functioning:

dj(t) =
∞∑
i=1

u(t− tdi,j), tdi,j ≥ tai,j . (II.2)

Thus, the future load to satisfy can then be decomposed as:

L(t) = LN (t) + LS(t) (II.3)

where LN (t) represents the base load which we presumably
have no control over, while LS(t) is the controllable part
of the load due to the smart appliances. For the rest of the
paper we consider LN (t) highly predictable, using standard
load forecasting techniques (see e.g. [14], [15]). In addition, it
is convenient to include in LN (t) the load due to previously
scheduled smart appliances, since we assume that the func-
tioning of an appliance cannot be interrupted once started.

The smart load, LS(t) can now be written as the following
function of the departure process

LS(t) =

H∑
j=1

∑
i∈Ij

gj

(
t− tdi,j
Ci,j

)
, tdi,j ≥ tai,j (II.4)

where the set Ij includes all appliances that require scheduling
in the jth arrival process, i.e. it includes the appliances of the
jth type that have already arrived in the system at time t but
have not yet been authorized to function or the ones that are
expected to arrive in the future.

III. LOAD RECONSTRUCTION

We saw that the information required to model the future
load of the system in the control center includes visibility of
the arrival process (tai,j), the type of the arriving appliances,
and their energy request code, Ci,j . To collect this information,
we will need a data gathering methodology. To find a suitable
one, we first have to look at how we are going to use this
communicated information.

To avoid large storage and computational costs, we quantize
the charging codes Ci,j of appliances, which for scalar codes,
like the battery charge for EVs, will correspond to

Q(Ci,j) ∈ {Cq,j , q = 1, . . . , Qj} (III.1)

The quantization is also a tool to separate the appliances
in classes of service; we assume that arriving appliances of

2The actual finishing time of the job is a one to to one mapping from this
departure time, depending on the queue to which the appliance belongs.



Fig. 1. Communication and Control Architecture

the jth type are put in Qj separate queues depending on their
charging code. The statistics of each queue (rate of arrival) can
be obtained from λj(t) and f j

C(c). Assuming that we round
up to the next allowable quantized value and C0,j = 0:

λq,j(t) = [f j
C(Cq,j)− f j

C(Cq−1,j)]λj(t), q = 1, . . . , Qj

From this point on, we use the variable Cq,j to denote the
job duration associated with the q-th queue of the the type-
j appliances. The number of quantization levels Qj can be
chosen to satisfy one of these two performance metrics:
•Minimize the Qj’s while satisfying a desired maximum
distortion W in load reconstruction, i.e.

min
Qj

∑H
j=1 Qj , s.t.

∑H
j=1 E (Wj) < W, (III.2)

where E(Wj) is the largest expected distortion bt the j-th type

Qj∑
q=1

λmax
q,j

∫ ∞

t=0

∫ Cq,j

x=Cq−1,j

∣∣∣∣g( t

x

)
− g

(
t

Cq,j

)∣∣∣∣ f j
C(x)dtdx

due to quantization errors. λmax
q,j denotes the maximum of the

quantity over time. The Cq,j’s will be determined uniquely
from Qj and the range of Ci,j if a uniform quantizer that
rounds up to the nearest level is assumed.3

•Under a maximum bit rate constraint, minimize the distortion,

minQj

∑H
j=1 E[Wj(t)]

s.t. max
λ

RHEMS–MAC < Rmax
1 , max

λ
RBS–CEMS < Rmax

2

where the functions RHEMS–MAC and RBS–CEMS are cal-
culated in section V. It is clear that the optimum in both cases
is reached when the constraints are tight.

Since arrivals in different queues are independent processes,
the arrival process aj(t) can be divided into Qj separate
processes whose state can be represented by a vector āj(t) of
length Qj with the property that ∥āj(t)∥1 = aj(t). The cor-
responding departure processes from each queue can also be
represented by a vector d̄j(t), also satisfying ∥d̄j(t)∥1 = dj(t).
We also know that āj(t) ≽ d̄j(t), where ≽ represents element
by element inequality. This is due to the simple fact that the

3For the moment we assume a uniform quantization, but in future work
we will examine the impact that different quantization can have on the
optimization.

the number of departures from each queue can never be larger
than the number of arrivals.

The quantization of the charge durations in Qj levels allows
a simple system representation of the relationship between the
individual queue departure processes and the total smart load.
In fact, since the Cq,j’s are discrete values, we can rewrite the
load due smart appliances as

LS(t) =

H∑
j=1

Qj∑
q=1

∂

∂t
[d̄j(t)]q ⋆ gj

(
t

Cq,j

)
(III.3)

where the time derivative ∂
∂t [d̄j(t)]q will produce a Dirac

delta each time an arrival occurs in the qth queue of the jth

appliance type and ⋆ represents the convolution operation.
Combinatorial complexity is an inherent feature of schedul-

ing problems. To be able to work online, a real time solution
methodology should reduce the problem size. Since we are
unable to communicate the arrival time with infinite precision,
it is reasonable to use a predetermined set of discrete time
decision intervals to reduce this complexity,

tdi,j ∈ {l△|l ∈ N} (III.4)

Thus, the departure process d̄(t) can only have increments at
these discrete set of time instants. Due to this, an alternate
representation of the smart load for t ≥ l0△ = ⌈ t

△⌉△ is,

LS(t) =

H∑
j=1

Qj∑
q=1

∞∑
l=l0

[d̄j(l△)− d̄j((l − 1)△)]qgj

(
t− l△
Cq,j

)
(III.5)

Assuming that the charging pulse g(t) can be considered
constant during intervals of length △, we can write the load
as a function of a set of discrete variables. Hence, from this
point on, we discretize the arrival and departure processes and
replace the previously defined quantities with their discrete
counterparts. For example,

[āj(l△)]q → aq,j(l), [d̄j(l△)]q → dq,j(l)

gj(
l△
Cq,j

) → gq,j(l), LS(u△) → LS(u)
(III.6)

Which leads to the following representation of the load in
terms of the decisions dq,j(l) and samples of the pulses gj(t)

LS(u) =

H∑
j=1

Qj∑
q=1

∞∑
l=l0

[dq,j(l)−dq,j(l−1)]gq,j(u−l) , u ≥ l0

(III.7)



Before further clarifying the communication support infras-
tructure in Section V, we discuss the general formulation of
the cellular energy control optimization in the next section.

IV. OPTIMIZATION PROBLEM

A. Modeling the Delay

To formulate an optimization problem that schedules smart
appliances, a quantity that requires modeling is the delay
experienced by these appliances. It is a well-known result
in traffic flow theory that the total delay experienced by the
customers in a queue, i.e.

∑
i(t

d
i − tai ) is equal to the area of

the queue polygon, which is a function that represents the state
of the queue s(t) versus time. It is obtained by superimposing
the departure and arrival profiles, a(t) and d(t):

s(t) = a(t)− d(t) (IV.1)

The delay experienced in the past by the appliances currently
present in the system is not amendable and so, it is not of any
interest in the formulation of the optimization. As a result,
for the purpose of optimal scheduling in the future, one can
replace the total delay cost with the total delay experienced
by all the customers in the future, i.e. what we call the Delay
Cost Increment (DCI) for the appliances of the jth type:

DCIj(t) , Cj
D

∫ ∞

t

sj(τ)dτ = Cj
D

∫ ∞

t

(aj(τ)− dj(τ))dτ

where Cj
D is the cost per unit of time delay for the jth type.

If the delay cost Cj
D is a function of time, we can write

DCIj(t) =
∫ ∞

t

Cj
D(τ)(aj(τ)− dj(τ))dτ (IV.2)

After quantizing the Ci,j’s , the DCI defined in (IV.2) can be
rewritten in following alternative ways,

Cj
D

∫ ∞

t

(∥āj(τ)∥1 − ∥d̄j(τ)∥1)dτ

One should note that when using a discrete set of decision
epochs, we cannot change the delay experienced by the
vehicles before l0△. Applying this fact to (IV.3), we can
replace the delay cost increment at time t with

DCIj(l0△) = Cj
D

∫ ∞

l0△
∥āj(τ)− d̄j(τ)∥1dτ (IV.3)

= Cj
D

∥∥∥∥∫ ∞

l0△
[āj(τ)− d̄j(τ)]dτ

∥∥∥∥
1

= Cj
D

∥∥∥∥∥
∞∑

l=l0

∫ (l+1)△

l△
āj(τ)dτ − d̄j(l△)△

∥∥∥∥∥
1

Since the delay experienced by the customers between their
arrival time until the next possible decision epoch is also not
amendable, we can also remove the associated penalty from
our cost and thus, reformulate the delay cost as,

DCIj(l0△) = Cj
D

∥∥∥∥∥
∞∑

l=l0

[āj(l△)△− d̄j(l△)△]

∥∥∥∥∥
1

(IV.4)

Note that the interchangeability of integration (or sum) and
the L1 norm is possible since āj(t)− d̄j(t) ≽ 0.

Now, we will look into ways of using this new information
exchange strategy to help the grid operate more reliably.

B. General Formulation of Scheduling Problem

Assuming that consumers participate in a DLC program
by subscribing to the cellular load management service, we
now want to formulate a general scheduling problem for these
entities. The operational costs of these control center include:

1) Wholesale market day-ahead bidding cost: by looking on
the day ahead forecasts of its local generation units and
its load pattern, the control center participates in the day
ahead wholesale market and purchases a certain amount
of power for every hour of the next day so that it can
safely serve all of its load reliably.

2) Wholesale market real-time bidding cost: if the control
center cannot serve its customers with its local generation
and its day ahead bid, it buys more energy from the
central grid in a spot market.

Other costs include the cost of purchasing energy from the
local market for distributed generation and the inconvenience
cost paid to customers as an incentive for participating in a
DLC program, which we assume to be proportional to the
amount of delay they experience. On the other hand, the
utilities of the control center are from selling electricity to
customers, carbon taxing utility and the wholesale market
ancillary service utility, if any such services are provided.

Thus, the control center minimizes the following objective
function to find the optimum schedule for smart appliances,

min
D

E[Cost of retail entity in real time] =

min
D

E{
l0+T∑
l=l0

[C(LN (l) + LS(l), l)− U(LN (l) + LS(l), l)]

+
H∑
j=1

DCIj(l0)}

s.t. dq,j(l − 1) ≤ dq,j(l) ≤ aq,j(l)

dq,j(l) ∈ Z+

dq,j(T ) = aq,j(T ) (IV.5)

Where D is the entire decision space, i.e. D = {dq,j(l), l ≥
l0} and T is the look-ahead horizon. U is the utility function
associated with selling energy equal to LN (l) + LS(l) in the
retail electricity market to end-use customers. If dynamic retail
pricing strategies are implemented, U will be a function of
time. C is the cost that the retail utility incurs in at time l when
purchasing electricity equal to LN (l) + LS(l) from a central
wholesale market or the local intermittent resources. DCI(l0)
is the delay cost increment defined in section IV-A, calculated
in a finite horizon T . The first and second constraints are due
to causality and the third constraint requires that no arriving
appliance is delayed beyond time l0 + T .



V. INFORMATION GATHERING AND DISTRIBUTION

A. The Cell Uplink

In the previous sections, we saw that only the number of
customers arriving in each queue between each two decision
epochs is what is required to determine an optimal departure
process from these queues and, optimally modify the smart
part of the load LS(t). So, the control center has to have
an information gathering strategy that avoids unnecessary
communication. It only needs to gather the value of the vectors
āj(l∆) that aggregate the arrivals in the queues of the jth

appliance type during the interval [l − 1, l)∆, for real-time
applications. Each HEMS can locally compute the accrued
inconvenience cost and communicate it offline to track the
quality of service delivered to each individual home, which
means that the data communicated for real time scheduling
can be both anonymized, as well as aggregated as they flow
towards the CEMS. Hence, the identification of the HEMS
system, and its authentication are not functions that need to
be performed in real-time and do not therefore correspond to
the traffic with delay constraints. Assuming that there are H
different types of appliances, the time sensitive bits correspond
to the digital communication of the tuple (j, tai,j , Q(Ci,j)),
which requires clearly log(H) to specify the type j and logQj

bits for the charging class. The arrival time tai,j here represents
an index that multiplies a discrete time interval equal to the
scheduling resolution ∆.

Let tni,j > tai,j be the notification time index of the arrival,
i.e. the time interval k∆ when the event is first recorded and
added to the corresponding queue ai,j(t

a
i,j∆). Assuming that

tni,j − tai,j < D,

where D is a maximum network delay, the arrival time
can be encoded modulo D, using the notification time as
side information, and computing the arrival time as tai,j =
tni,j − [tni,j ]D + [tai,j ]D. In this case, clearly, encoding tai,j only
requires log2 D bits. Hence, considering that λj(l∆) is the
traffic of type-j loads arriving in the system, the HEMS access
channel needs to support an aggregate traffic of

RHEMS−MAC(l) =
1

∆

H∑
j=1

λj(l∆) log2(HDQj). (V.1)

As discussed before, the traffic can be aggregated at the first
network relay, acting as a base station (BS); for example a BS
could map one to one with each area transformer or to a ISP
node, coalescing the arrival times into information about the
arrival vector āj(l∆). Assuming that each component can be
approximated with a Poisson r.v., the communication rate of
the aggregate arrival vector is bounded by:

RBS−CEMS(l) =
H∑
j=1

Qj
1

2
log(2πeλj(l∆)). (V.2)

Next, we discuss a messaging strategy for the downlink
feedback.

Fig. 2. Mapping decisions into feedback messages

B. Communicating the decisions back

Consistently with our uplink model, we envision a downlink
message structure that preserves the anonymity of the sched-
uled user. Once the CEMS decides the optimum schedule, it
sends a record with H feedback messages, one for each type,
to let the vector d̄optj (l) of appliances in: the j-th feedback
consists of a Qj × 1 vector T̄ j(l), which alerts all appliances
of type j in the corresponding classes q = 1, . . . , Qj that
arrived before time T j

q (l), to enter the system.
The calculation of these vectors is performed as indicated

in Fig. 2 and summarized in the following equation:

T j
q (l) = max{τ ≤ l : aq,j(τ) ≤ doptq,j (l)} (V.3)

This system makes sure that the departures match the desired
value, while guaranteeing anonymity of the access requests.
Also, it is not necessary to transmit absolute times T j

q (l).
Considering that the delay is an explicit cost for the optimiza-
tion, and that the optimum decisions are correlated since the
queue states are correlated, T j

q (l) can be differentially encoded
with a relatively modest rate requirement. More specifically,
assuming that ρj is the minimum correlation coefficient among
the decisions for appliances of type j in any class and at any
time, and that the variance of the delay for appliances in class
j is bounded by χj , then each feedback vector can be encoded
in Qj

1
2 log2(2πe(1− ρ2j )χj) bits every ∆.

VI. NUMERICAL ANALYSIS

A. Traffic Estimation in a Real Scenario

In today’s development of the AMI, the BS can be associ-
ated with the gateways installed in small neighborhoods. The
communication links between these gateways and the CEMS
support very high rates (T1 lines, DSL, Wimax, etc.) and thus,
the communication of the arrival and decision messages is well
provisioned. The links that may not have a bandwidth as large
as these links are the ones connecting the smart meters to the
gateways, or the Local area network, which is based on either
RF or PLC. In this section, we calculate the number of bits
each arrival message may contain in a real deployment of the
DLC technique introduced in this paper. To choose a suitable
Q for the EV case, the constraint in III.2 can be simplified if
we assume that g is a rectangular pulse. Then, each EV will



cause a false load in the optimization for a maximum time
duration of Cmax

i,j /Qj . Now, let us consider a realistic scenario:
Assume that a Microgrid is handling the charge scheduling of
500 vehicles and they all arrive in a span of 5 hours (4-9 pm)
uniformly. If the CEMS wants to make sure no more than
10 EVs are falsely assumed to be charging at any time, then
the resolution required to quantize Ci,j is around 5 minutes.
If we assume that Cmax

i,j = 8 hours, then Qj = 96, which
requires 6 bits to communicate. Assuming that the delay of
the AMI network is 15 minutes, then the arrival time will also
require 4 bits to be communicated. Also, if 4 types of smart
appliances are present in the optimization, 2 more bits are
needed to communicate the type. This sums up to 12 bits per
arrival message, which is a very modest rate. This shows that
the main concern is therefore coverage and reliability rather
than high speed connectivity.

B. Load scheduling

In this section, we will present numerical results for a
simple test situation to provide insight on how direct load
management of appliances can improve the ability of a control
center to match its available generation supply. Due to lack of
space, we are unable to present the underlying reasoning that
leads from the operational costs in Section IV-B to the selected
forms for functions U and C in IV.5, which are the following:

C(LN (l) + LS(l), l) = Cdv(l)|P (l)− (LN (l) + LS(l))|
U(LN (l) + LS(l), l) = Crt(l)(L

N (l) + LS(l)) (VI.1)

where we will assume to have perfect knowledge of the
available generation P (l), the retail prices Crt(l) and the
deviation penalties Cdv(l) in the look-ahead horizon.

The simulated scenario is as follows: we assume that only
a single type of smart appliance is present in the system with
a minimum and maximum job size of 1 and 4 units of time.
The appliances arrive in the system following a Poisson arrival
process with a mean arrival rate λ = 3 for each job size,
assumed to be constant for simplicity and also, known a-priori.
The optimizer solves the problem with a one-step lookahead
rollout on a certainty equivalent controller that uses linear
programming to determine the best scheduling strategy. After
each step, the scheduled loads are added to the uncontrollable
load term for future epochs. Fig. 3 compares the uncontrolled
load profile with the profile resulting from the DLC strategy.
The results show a 40 percent reduction in deviation from
the generation profile P (l) in a horizon of 50 units of time.
The look-ahead horizon in these simulations is assumed to be
5 units of time and to be fair, no appliance is allowed to be
delayed beyond t = 50. So, the number of appliances receiving
service is equal in both load profiles. The results also show that
the average delay experienced by customers in this program
is less than one unit of time.

VII. CONCLUSIONS

In this paper, we first introduced a traffic management model
required for direct load control in smart power systems. Also,
we gave a general formulation for the optimization problem
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Fig. 3. Simulation Results

that needs to be solved by a control center in charge of
scheduling the appliances. A more in depth discussion of this
optimization will be provided in future works.
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