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ABSTRACT

The United States and many other countries are conducting a major upgrade

of their electrical grids. The new “smart grid” is not a physically isolated

network like the older power grid was, but a complicated network of networks.

That greatly increases the security concerns, ranging from hackers who gain

access to control networks or create denial-of-service attacks on the networks

themselves, to accidental causes, such as natural disasters or operator errors.

Therefore, it is critical to build a safe, resilient and secure communication

environment for protecting the smart grid. Under this central theme, our

research work has two strongly correlated streams.

First, to analyze large-scale networked systems (e.g., smart grid communi-

cation networks) with high fidelity, it is necessary for a testing system to offer

both effective emulation (to represent critical software execution) and realis-

tic simulation (to model background computation and communication). We

have developed a network testbed using both parallel simulation and virtual-

machine-based, virtual-time-embedded emulation to provide both functional

and temporal fidelity for running large-scale networking experiments, so that

technologies can be appropriately evaluated with modeling and simulation

methodologies as well as with real software/hardware testing before they are

integrated into the grid.

Second, we have utilized the testbed to study various cyber attacks in

the smart grid, including a distributed denial-of-service attack (DDoS) in an

advanced metering infrastructure (AMI) and an event buffer flooding attack

on a supervisory control and data acquisition (SCADA) system (both for the

Trustworthy Cyber Infrastructure for the Power Grid (TCIPG) Center at

the University of Illinois at Urbana-Champaign), and also used it to evaluate

a demand response design in a hierarchical transactive control network (as

part of the Pacific Northwest smart grid demonstration project).
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CHAPTER 1

INTRODUCTION

1.1 Motivations

Today’s quality of life greatly depends on the successful operations of many

large and complex communication networks, such as the Internet, cellular

networks, and the communication infrastructure of national power grids. The

health of those critical networks is at serious risk from both malicious cyber

attack and accidental failure. Currently, the United States and many other

countries are conducting a major upgrade of their power grids. Many critical

components of the next generation of the grid, such as advanced metering

infrastructure (AMI), substation automation, and supervisory control and

data acquisition (SCADA) systems, require interconnections among various

types of networks. Therefore, the grid is no longer a physically isolated

network, but a complicated network of networks. If a design that will be

implemented on such a scale has not been appropriately tested and evaluated,

the result can be security concerns and performance issues for the critical

infrastructure. Testing systems are an important approach to studying the

cyber-security and efficiency of the power grid, because of their flexibility,

controllability and lack of interference with real systems. These test systems

may interact with actual equipment in order to reveal how the equipment will

react in various situations. However, the scope of the grid makes it infeasible

to create a physical test system anywhere near its full scale.

Network simulation and emulation help to alleviate the concern. Re-

searchers have created various network testbeds that use emulation and/or

simulation to conduct medium-to-large-scale communication network exper-

iments. The emulation testbeds coordinate real physical devices and provide

a configurable environment for live experiments, but with respect to network-

ing are constrained by budget and the inherent limitations of lab equipment,
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restricting scalability and flexibility. On the other hand, network simula-

tion provides better scalability and flexibility, but degrades fidelity owing to

the sort of model abstraction and simplification necessary to achieve scale.

Furthermore, development of simulation models can be labor-intensive and

error-prone. Therefore, we have developed a parallel network simulator [1],

and an OpenVZ-based network emulator embedded in virtual time [2], and

have integrated the two systems based on the virtual time to provide a unique

testbed to study smart grid applications in realistic large-scale settings [3].

The network emulation is used to represent the execution of critical soft-

ware to ensure functional fidelity, and the parallel network simulation is used

to model an extensive ensemble of background computation and communi-

cation. For example, to investigate a DDoS attack in an AMI network, we

used emulation to run real smart meter programs (rather than meter models)

to accurately represent behaviors of compromised meters, and used simula-

tion to model a large number of intermediate meters including the Zigbee

networking communication environment and background traffic generation.

1.2 Research Objectives and Contributions

1.2.1 A Large-Scale Network Simulation/Emulation Testbed

We want the capability to embed a smart grid subsystem within a high-

fidelity virtual environment and quantitatively assess the behaviors under

realistic conditions, the reliability in the face of faults, the effectiveness of

security defenses, and the presence of unknown vulnerabilities. The high-

fidelity virtual environment is the key.

Our first contribution is that we developed a large-scale, high-fidelity net-

work emulation/simulation testbed, which is currently serving as a central

component in the TCIPG smart grid laboratory at the University of Illinois

at Urbana-Champaign [4]. The testbed integrates a parallel network simula-

tor, for which we developed a rich set of network protocols and applications

used in the smart grid (such as ZigBee, Ethernet, DNP3, Modbus, and Open-

Flow), to model the large-scale network environment, and an OpenVZ-based

network emulator to represent the execution of critical software. Because of

the parallel simulation kernel, the lightweight virtualization technology, and
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the use of efficient models to reduce simulation cost, the unique testing sys-

tem provides good scalability for conducting large-scale network experiments

on smart grid technologies. The controllability, flexibility, and repeatability

offered by the testbed are also helpful in the evaluation and analysis of many

emerging technologies in the smart grid.

1.2.2 Virtual-Time Integration of Simulation and Emulation

Integration of emulation and simulation systems is not a trivial task, since

emulation advances the state of the program with respect to real, “wallclock”

time, and simulation advances the state of the model with respect to the more

abstract, “virtual” time. Therefore, there are research problems related to

interactions and management of virtual time between emulations and sim-

ulation. Our design needs to address the inherent errors due to the VM

control as well as the exploitation of parallelism. Our contributions include

the following:

• We integrated the “virtual time” concept in a virtual-machine-based

(OpenVZ) emulation system to ensure temporal fidelity.

• We developed global synchronous scheduling algorithms to enable seam-

less connection between the emulation (VE entities) and the simulation

(simulation threads).

• By finding analytical bounds for the error, we developed a response

to serious concerns about the unavoidable uncertainties involved in

emulation behavior, and we produced empirical data showing that the

error is as small as the minimum system execution unit.

1.2.3 Modeling Smart Grid Communication Networks

Modeling of smart grid communication networks involves unique challenges.

First, the testing system may need to interact with real devices (e.g., re-

lays, phasor measurement units, and/or data aggregators) in the course of

experiments, and our simulation/emulation testbed must keep up with those

devices in real-time. Second, networks in the smart grid are often large-

scale (e.g., SCADA networks or AMI networks), ranging from thousands to

3



millions of entities. Therefore, scalability and performance of a testbed are

critical. In addition to developing the parallel simulation kernel and the

lightweight kernel-level virtualization technology, we also investigated means

to reduce simulation cost. The major contributions are summarized as fol-

lows.

Switch Models

Switched networks, such as SCADA networks and utility enterprise networks,

are used widely in smart grid communication. From real traces, we observed

that the time-scale difference between applications and switches suggests that

exact latency is not as important as average latency, but that a packet loss

under TCP impacts application behavior. Therefore, we developed latency-

approximate scheduling for a weighted fair queuing discipline [5]. The new

switch models significantly reduce simulation cost with only a small loss of

fidelity.

Background Traffic Models

The cost of simulating a network can easily represent the overwhelming ma-

jority of the overall cost of performing a simulation experiment. In some

applications, only a small fraction of traffic is of specific interest. For exam-

ple, in models of SCADA networks, we are mainly interested in the detailed

behavior of specific flows (e.g., a DNP3 or Modbus connection between a

control station and a particular substation), and are interested in other flows

only in-so-far as they consume resources and affect the behavior of the de-

tailed flows.

Structured traffic patterns enable compact and efficiently executed back-

ground traffic. We have developed techniques for modeling background traf-

fic through switches that use Fair Queuing scheduling and First-Come-First-

Served scheduling [6]. The background traffic models enable experiments that

include low-cost background traffic mixed with detailed foreground traffic.

The new models run extremely fast relative to packet-based flow simulation

(with speedups exceeding 3000), and the foreground flows are still accurate

enough for our purposes.
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Software-Defined Networks

A software-defined network (SDN) design decouples the data plane and the

control plane of a switch or a router. The logically centralized controller

can directly configure the packet-handling mechanisms in the underlying for-

warding devices (e.g., drop, forward, modify, or enqueue). The benefits of

applying SDN in the context of the smart grid include elimination of the

need to configure network devices individually; consistent policy enforcement

across network infrastructures (such as policies for access control, traffic en-

gineering, quality of service, and security); the ability to define and modify

the functionality of a network after deployment; and evolution of products

at software speeds rather than at standards-body speed. Therefore, we ex-

tended the testbed to support OpenFlow-based SDN simulation and emu-

lation. However, the centralized controller designs of SDN impose potential

performance issues in parallel discrete-event simulation.

Our contributions include a demonstration of how to exploit typical SDN

controller behavior to deal with the performance bottleneck of centralized

controllers, and the results of our investigation of methods for improving

model scalability, including an asynchronous synchronization algorithm for

passive controllers and a two-level architecture for active controllers [7]. The

techniques not only improve the simulation performance, but also are valu-

able for designing scalable SDN controllers. In addition, the SDN simula-

tion/emulation testbed is a useful tool not only for smart grid networks, but

also for SDN-based research in general.

1.3 Thesis Outline

The remainder of this dissertation is structured as follows.

Chapter 2 presents our network testbed consisting of a parallel simula-

tor and virtual-machine-based emulator for conducting large-scale network

experiments with high functional and temporal fidelity. We start with back-

ground on network simulation and emulation, the parallel simulation kernel,

and virtual time in Section 2.1, followed by an overview of the system design

in Section 2.2 and implementation details of each component, as well as the

system integration, in Section 2.3. We then report on system evaluations,

including error analysis in Section 2.4, performance analysis in Section 2.5,
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and application-level fidelity analysis in Section 2.6. We then describe fea-

tured models developed in the system, including background traffic models

in Section 2.7 and software-defined networks in Section 2.8.

Chapter 3 describes how we use the network testbed to conduct security

and performance studies of various smart grid applications. Section 3.1 inves-

tigates a distributed denial-of-service attack using the C12.22 trace service

in an advanced metering infrastructure (AMI) network. Section 3.2 explores

an event buffer flooding attack in DNP3-controlled supervisory control and

data acquisition (SCADA) networks. Section 3.3 proposes multiple designs

for the demand response algorithms and evaluates the designs on a large-scale

hierarchical transactive control network.

Finally, Chapter 4 summarizes the conclusions made in this dissertation

and sketches the directions for future research.
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CHAPTER 2

A NETWORK TESTBED WITH
PARALLEL SIMULATION AND

VIRTUALIZATION-BASED EMULATION

The advancement of large-scale computer and communication networks, such

as Internet, power grid control networks, heavily depends on the successful

transformation from in-house research efforts to real productions. To enhance

this transformation, research has created various network testbeds that use

emulation, or simulation, for conducting medium to large-scale experiments.

The emulation testbeds coordinate real physical devices and provide a con-

figurable environment to conduct live experiments, but for networking are

constrained by budget and what can be equipped in a lab. This limits scala-

bility and flexibility. On the other hand, network simulation provides better

scalability and much more flexibility, but degrades fidelity owing to the sort

of model abstraction and simplification necessary to achieve scale. Further-

more, development of simulation models can be labor-intensive.

Our work in studying security in the smart grid motivates us to create

a high-fidelity and large-scaled network testbed, since many critical com-

ponent in the smart grid, such Advanced Metering Infrastructure (AMI)

and Supervisory Control and Data Acquisition System (SCADA), are large-

scaled network, and smart grid itself is a complex network of networks. Our

testbed uses a version of OpenVZ modified to operate in virtual time [8] with

a new parallel network simulator, S3F [1], which was inspired by SSF [9], and

RINSE [10].

Our testbed uses emulation to represent the execution of critical software,

and simulation to model an extensive ensemble of background computation

and communication. For example, we need to study behavior of software and

networking in a system with many meters, connected locally through wireless

networks, and through wire-line networks to utilities. We need to study how

particular software behaves under cyber attack, and how the nature of a

distributed denial-of-service (DDoS) attack affects delivery of that attack to

victims, and how it impacts the overall network behavior. We use emulation
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technology to run real software stacks that run in meters, and simulation

technology to model wireless and wireline networks, as well as models of

meters that contribute to the network traffic load but are not otherwise

particular objects of study.

2.1 Background

2.1.1 S3F — The Scalable Simulation Framework

The Scalable Simulation Framework (SSF) is an API developed to support

modular construction of simulation models, in such a way that potential par-

allelism can be easily identified and exploited. Following ten years of use, we

created a second generation API named S3F. More details about S3F are in

[1]. In both SSF and S3F, a simulation is composed of interactions among a

number of entity objects. Entities interact by passing events through chan-

nel endpoints they own. Channel endpoints are described by InChannels and

OutChannels depending on the message direction. Each entity is aligned to

a timeline, which hosts an event list and is responsible for advancing all

entities aligned to it. Interactions between co-aligned entities need no syn-

chronization other than this event-list. Figure 2.1 depicts the basic elements

described above.

S3F supports parallel execution, which requires synchronization among the

timelines. Multiple timelines may run simultaneously to exploit parallelism,

but they have to be carefully synchronized to guarantee global causality.

Much of the motivation and design of S3F is to support synchronization

more-or-less transparently, yet provide hooks to the sophisticated modeler to

transfer modeling information to the synchronization engine that is used to

improve performance.

The basic idea behind synchronization is simple. Use information about

latencies across communication paths established between outchannels and

inchannels to establish a window of simulation time with the property that

no activation written to an outchannel at a time within that window will

be received by an inchannel on a different timeline at a time also within

that window. The windows are implemented with barrier synchronizations.

The upshot is that cross-timeline events do not have to be immediately
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Figure 2.1: S3F Basic Elements

delivered—their receipt lies on the other side of a barrier synchronization,

so they can be buffered pending a step where synchronized timelines ex-

change such activations, and integrate them into their target timeline event

lists. The synchronization mechanism is built around explicitly expressed de-

lays across channels whose endpoints reside on entities that are not aligned.

We call these cross-timeline channels. The synchronization algorithm cre-

ates synchronization windows, within which all timelines are safe to advance

without being affected by other timelines.

Figure 2.2 illustrates the concept. Suppose the timelines have all advanced

to simulation t, and have in their event lists all events known (at that time)

to be executed. Execution of some of these events may of course introduce

other events into the list, but every future event known at time t is in the

event list of the timeline that will execute it. The timelines are working to
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Figure 2.2: Synchronization Window

coordinate how far ahead in simulation time they can safely advance. Each

timeline identifies the time of the first event it has in its list, which is a lower

bound on when next the timeline will execute a process that performs a write

that crosses timeline boundaries. Each timeline also identifies the minimum

over all mapped cross-timeline outchannel/inchannel pairs of the outchannel’s

minimum per-write delay, and the transfer delay to the inchannel. That is,

each timeline i identifies a lower bound on the arrival time of any future

cross-timeline write as

Li = ni +Bi

where we separate the bound into time of next event ni, and

Bi = min
outchannel c

{
wc + min

cross-timeline mapped inchannels k
tc,k

}

where wc is the minimum per-write delay declared for outchannel c, and tc,k

is the transfer time between c and inchannel k owned by an entity aligned

to a different timeline than c’s owner. To establish the synchronization win-

dow the timelines offer their respective Li values to a global min-reduction.

On being released from the associated barrier, each timeline can read the

10



minimum among all offered values—this is the upper edge of the window.

Simulation time may advance to one clock tick less than this value.

The value of ni may change from window to window, but Bi need not, at

least so long as there are no changes in the inchannels mapped, the transfer

delays, or the minimum per-write delays, the result of a prior computation

can be used. However one cannot always expect the set of mapped outchan-

nels/inchannels to remain constant, and changes in model state may allow

(or require) the model to change an outchannel’s per-write minimum delay,

or some transfer delay. S3F allows dynamic unmap and mapto calls, and

dynamic changes to minimum per-write and transfer delays. S3F tries to

minimize the impact of those changes by being smart about recomputing

Bi. Once computed, S3F also counts the number of cross timeline outchan-

nel/input pairs that actually achieve the computed value of Bi. Any change

in mapped channels or their delays that decrease that count need not trigger

a recomputation so long as the change leaves at least one outchannel/input

pair with Bi’s value. Likewise any change that cannot possibly lower Bi (e.g.,

increasing either the per-write minimum delay or a transfer delay) will not

trigger recomputation of Bi. However, requests for changes that do affect Bi

raise a flag that later triggers recomputation of Bi.

After a timeline has processed all the window’s events, implemented any

buffered delay changes, and recomputed Bi (if needed), it sets its clock to

the time of the window edge minus one clock tick, and enters another barrier

synchronization to wait for all other timelines to do so also. When they

are released, they transfer buffered events that resulted from cross timeline

writes into their event lists (thereby ensuring that each time of next event ni is

what it needs to be), and compute the upper edge of the next synchronization

window.

S3F synchronizes its timelines at two levels. At a coarse level, timelines are

left to run during an epoch, which terminates either after a specified length

of simulation time, or when the global state meets some specified condition.

Between epochs S3F allows a modeler to do computations that affect the

global simulation state, without concern for interference by timelines. Good

examples of use include periodically recalculating of path loss delays in a

wireless simulator, or periodic updating of forwarding tables within routers.

States created by these computations are otherwise taken to be constant

when the simulation is running. Within an epoch timelines synchronize with

11



each other using barrier synchronization, each of which establishes the length

of the next synchronization window during which timelines may execute con-

currently. Synchronization between emulation and simulation is managed by

the global scheduler in S3F at the end of a synchronization window, when all

timelines are blocked, and events and control information are passed between

emulation and simulation. Details about these interactions will be discussed

in Section 2.3.1.

2.1.2 Network Simulation and Emulation

Network testing systems are widely used for evaluating, debugging and an-

alyzing new and existing network designs. Network testbeds generally fall

into three categories: physical testbeds, emulation testbeds and simulation

testbeds. The physical testbeds provide realistic networking environment for

users to conduct (sometimes live) networking experiments, such as WAIL

[11] and PlanetLab [12]. However, users have limited controllability and

flexibility on the network scenarios they could run, e.g., it is difficult to

test a network protocol/design on large-scale networks or with different net-

work topologies. Emulation and simulation testbeds have been developed

to address the shortcomings of the physical testbeds with better scalability,

flexibility, controllability and repeatability, but less accuracy and realism.

Network emulation testbeds utilize virtualization technologies to create

flexible virtual network topologies with better scalability as compared with

physical testbeds. Emulation runs software in virtual machines which share

lower layer resources (even the hardware platform) transparently. The crit-

ical differences between emulation and native execution include: (1) native

execution is always tied to “wall-clock” time; (2) interfaces to emulation is

standard networking; and (3) specialized hardware functionality (e.g., DSP)

is hard to emulate. Ordinary network emulators are also embedded in real-

time, which causes temporal fidelity issues. Researchers have investigated

emulation virtual-time systems to address this, and details are presented

in Section 2.1.3. Researchers have built emulation testbeds on a variety

of computing platform, including computer clusters (such as EmuLab [13],

ModelNet [14], and DETER [15]), distributed computing platform (such as

VINI [16], VIOLIN [17], and X-Bone [18]), and specially programming de-
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vices (such as ORL[19], ORBIT [20] and CMU wireless emulator [21]).

While emulation executes “unmodified software” to produce behavior and

advance the experiments simulation executes “model software” (such as mod-

els of network protocol and network devices). Simulation uses abstractions

to accelerate changes to model states, and requires lower memory needs than

emulation. Hence, simulation testbeds typically have better scalability than

emulation testbeds, but less functional fidelity. Simulation can scale-up to

explore large-scale networks (e.g., SSFNet [22], GTNetS [23] and ROSS-

Net [24]). It may run faster or slower than real-time, while most emulation

testbeds are tied to “wall-clock” time and are limited by hardware capacity

as they need to run in real-time. In addition, developing simulation models is

labor-intensive and often error-prone. Representative network simulators in-

clude open source ones, such as ns-2 [25], ns-3 [26], SSFNet [22], GTNetS [23],

OMNeT [27], and J-Sim [28], and commercial ones, such as OPNET [29] and

QualNet [30].

Some systems combine both simulation and emulation, such as ns-2 [25],

ns-3 [26], and CORE [31]. Our S3F/S3FNet testbed provides the emulation

functionality which is similar to CORE in that both of them use OpenVZ to

run unmodified code and emulate the network protocol stack through virtu-

alization, and simulate the links that connect them together. A difference is

that CORE as well as ns-2 and ns-3 have no notion of virtual time, while

our testbed implemented the emulation virtual-time in the OpenVZ Linux

kernel [8].

2.1.3 Virtual Time

Ordinary network emulators are embedded in real-time, but network simula-

tors advance experiments in virtual-time. Therefore, integration of emulation

and simulation has temporal fidelity issues. The software managing virtual

environments (VEs) takes its notion of time from the host system’s clock,

which means that time-stamped actions taken by VEs whose execution is

multi-tasked on a host reflect the host’s serialization. This is deleterious

from the point of view of presenting traffic to a network simulator which

operates in virtual time. Here is one simple illustrative example: imagine

a set of synchronized emulated devices that in the real system all generate

13
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Figure 2.3: Emulation Temporal Fidelity Illustration Example:
Simultaneous Traffic Generation among VMs

a message within the same small δ of time (δ <<one time slice). Virtual

machine manager (VMM) separates the packet generation in real-time by

time-slice allocation as shown in Figure 2.3 (a). From the network simula-

tor’s viewpoint, the packets are generated one by one, each is separated by

approximately one time slice. Assuming the network scenarios have shared

medium, which every packet is competing for medium access, or the packets

will join the same queue of a connected switch, the observed behaviors are

incorrect. Ideally, each VE would have its own virtual clock, so that time-

stamped accesses to the network would appear to be concurrent rather than

serialized as shown in Figure 2.3 (b).

Recent efforts have been made to improve temporal accuracy in para-

virtualization. DieCast [32] and VAN [33] modify the Xen hypervisor to

translate real-time into a slowed down virtual time, running at a slower but

constant rate. At a sufficient coarse time-scale this makes it appear as though
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VEs are running concurrently. Our treatment of virtual time differs from

DieCast and VAN. The Xen implementations pre-allocate physical resources

(e.g. processor time, networks) to guest OSes. In case that the resources

have not been fully utilized by guest OSes, the VEs idle (like an operating

system would) simply to advance the virtual time clock. By contrast, we

advance virtual time discretely, and only when there is an activity in the

applications or network.

Our approach is related to the LAPSE system [34]. LAPSE simulated the

behavior of a message-passing code running on a large number of parallel

processors, by using fewer physical processors to run the application nodes

and simulate the network. In LAPSE, an application code is directly exe-

cuted on the processors, measuring execution time by means of instrumented

assembly code that counted the number of instructions executed; application

calls to message-passing routines are trapped and simulated by the simulator

process. The simulator process provides virtual time to the processors such

that the application perceives time as if it were running on a larger number

of processors. Key differences between our system and LAPSE are that we

are able to measure execution time directly, and provide a framework for

simulating any communication network of interest while LAPSE simulates

only the switching network of the Intel Paragon.

2.1.4 OpenVZ-Based Network Emulation

We expand the capacity of S3F/S3FNet by integrating it with the OpenVZ-

based network emulation. OpenVZ is a light-weighted container-based vir-

tualization technology in Linux [35]. OpenVZ enables multiple isolated ex-

ecution environments within in a single Linux kernel, called Virtual Envi-

ronments (VEs). A virtual time system has been developed in the OpenVZ

kernel to make VEs perceive virtual time as they were running concurrently

on different physical machines [8].

From operating system’s point of view, a process can either have CPU

resources and be running, or be blocked and waiting for I/O (ignoring a

“ready” state, which rarely exists when there are few processes and ample

resources). The wall-clock continues to advance regardless of the process

state. Correspondingly, in the our OpenVZ-based emulation system, the
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virtual time of a VE advances in two ways. When a VE is having the CPU

and is running, its virtual clock keeps advancing in the same speed as the

wall-clock. This is the same as real world. On the other hand, when the VE

is waiting for an I/O request, and such I/O request should be a simulated

one (e.g. network requests), the scheduler needs to make the VE perceives

time in the same way as real world. Specifically, while waiting for I/O, the

VE is suspended and therefore its virtual clock is not advancing. Instead,

the scheduler captures the I/O request, simulates it, and returns it to the

VE. Then the scheduler adds the simulated I/O time to the VE’s virtual

clock, and release the VE to let it run again. Consequently, the VE perceives

virtual time as if it were running in real world. Such notion of virtual time

is shown in Figure 2.4. Note that simulated I/O time is normally irrelevant

to the wall-clock time. The actual (wall-clock) time it takes to simulate an

I/O request can be either faster or slower than real (wall-clock), depending

on the model complexity and the simulator.
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Figure 2.4: Time Advancement: Wall-Clock vs. Virtual Time

A VE runs real applications which interact with emulated IO devices (e.g.

disks), generate and receive real network traffic, passing through real op-

erating system protocol stacks. The only mechanism available to control a

VE is the OpenVZ scheduler. When the scheduler frees a VE to execute,

the VE runs without interruption or interaction with any other VE for the

period of one “timeslice”, a configurable parameter. This presents us with

two challenges. One is that the actual length of time the VE runs is some-

what variable, the starting and stopping of that process being handled by

the native operating system. In particular, a set of VEs run concurrently will

not necessarily receive exactly the same amount of CPU service. This has
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ramifications for transforming observed real execution durations into virtual

time durations. A second challenge is that all interactions between a VE and

the network simulator must occur when the VE is not executing. This too

has ramifications on assignment of virtual time to message traffic, and on

how synchronization is performed.

2.2 System Design

We use S3F for simulating large network scenarios, as it provides sophis-

ticated networking layer protocols and the ability to simulate many many

devices such as routers, switches, and hosts creating and receiving back-

ground traffic. S3F therefore provides scalability. OpenVZ allows one to

run real applications under a real OS and pass messages between simulated

and emulated hosts. Users can plug in a real smart meter program rather

than be forced to create a simulation model of one. OpenVZ operates in

virtual time, not wall-clock time, thereby increasing temporal fidelity [8]

(unlike most other emulation systems). Freeing the emulation from the real-

time clock permits one to run experiments either faster than real time, or

slower, depending on the inherent simulation workload. Coordination of ac-

tivity between OpenVZ’s emulation and S3F’s simulation is handled by new

extensions to S3F, described in this section. The current system can run

100+ OpenVZ virtual machines and simulate millions of devices on a single

multi-core server.

Figure 2.5 depicts the overall system design architecture of our system,

which integrates the OpenVZ network emulation into a S3F-based network

simulator on a single physical machine. Structurally, every VE in the OpenVZ

model is represented in the S3FNet model as a host within the modeled net-

work, where S3FNet is a network simulator built on top of S3F. Within

S3FNet traffic that is generated by a VE emerges from its proxy host inside

S3FNet, and, when directed to another VE, is delivered to the recipient’s

proxy host. The synchronization mechanism needs to know the distinction

though between an emulated host (VE-host) or a virtual host (non-VE host),

as shown in Figure 2.5. However, the type of host should make no difference

to the simulated passing and receipt of network traffic. The global scheduler

we added in S3F is designed for coordinating safe and efficient advancement
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Figure 2.5: System Design Architecture

of the two systems and to make the emulation integration nearly transpar-

ent to S3FNet. The system capable of running large-scale and high fidelity

network experiments with both emulated and simulated nodes.

2.2.1 OpenVZ Emulation and VE Controller

OpenVZ is an OS level virtualization technology, which enables multiple iso-

lated execution environments, called Virtual Environments (VEs), within in

a single Linux kernel. A VE has its own process tree, file system, and net-

work interfaces with IP addresses, but shares a single instance of the Linux

operating system for services such as TCP/IP. Compared with other vir-

tualization technologies such as Xen (para-virtualization) and QEMU (full-

virtualization), OpenVZ provides excellent performance and scalability, at

the cost of diversity in the underlaying operating system.

A given experiment will create a number of guest VEs, each has represen-

tation by an emulation host within S3FNet. Each VE has its own virtual
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clock [8], which is synchronized with the simulation clock in S3F. The VEs’

executions are controlled by S3F simulation engine, such that the causal rela-

tionship of the whole network scenario can be preserved. As shown in Figure

2.5, S3F controls all emulation hosts through VE controller, which is respon-

sible for controlling all emulation VEs according to S3F’s command, as well

as providing necessary communications between S3F and VEs. More details

are provided in Section 2.3.

The VE controller uses special APIs to control all guest VEs. It has the

following three functionalities. (a) Advance emulation clock: while the VE

controller communicates with OpenVZ to start and stop VE executions, it

does so under the direction of the S3F global scheduler. Guest VEs are

suspended until the VE controller releases them, and they can at most ad-

vance by the amount specified by S3F. When guest VEs are suspended, their

virtual clocks are stopped and their VE status (e.g. memory, file system)

remains unchanged. (b) Transfer packets bidirectionally: the VE controller

passes packets between S3FNet and VEs. Packets sent by VEs are passed

into S3FNet as simulation inputs and events, while packets are delivered to

VEs whenever S3FNet determines they should. By doing so, we provide the

notion to the emulation hosts that they are connected to a real network.

(c) Provide emulation lookahead: S3F is a parallel discrete event simula-

tor using conservative synchronization [36], [37], and its performance can be

significantly improved by making use of lookahead. While S3F may have suf-

ficiently knowledge of the network model state when calculating lookahead, it

has no knowledge of the future behavior of an emulation. The VE controller

is responsible for providing such emulation lookahead to S3F, the details of

which are of course application dependent.

2.2.2 Simulation/Emulation Coordination

Our design prohibits OpenVZ VEs from executing concurrently with the S3F

simulation timelines. Our view is that the VE’s operate as traffic sources.

Correspondingly, before S3F permits the simulator to advance over a time

interval [a, b), we first ensure that all VEs have advanced their own virtual

time clocks to at least time b, to ensure that all input traffic that arrives

at the simulator with timestamps in [a, b) are obtained first. A packet gen-
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erated within a VE is given a virtual timestamp based on the VE’s clock

at the beginning of its timeslice, and the measured execution time until the

application code calls the OS to send the packet. The initial send time is as

accurate as we can make it.

A packet bound for a VE proxy host transits the network model, reaches

the proxy host, and is passed to the VE controller, stamped with the arrival

time, t. The VE controller delivers the packet to the target VE at the

initialization of the first timeslice when the target VE clock is at least as

large as t—for a very practical reason. All VEs share the same operating

system and its state, and all packets are ultimately obtained by the VE

through calls to the operating system; only by extensive modifications to the

OS kernel could we build in a per-VE buffering capability that would accept

a future packet arrival, and not present it to a VE before the packet’s arrival

time. We have adopted an approach that is much easier to implement, at

the cost of it always being the case that the virtual time at which a packet

is recognized (e.g. by a socket read) can be larger than the packet’s arrival

time.

While the synchronization window [a, b) was constructed to ensure that no

traffic created within [a, b) is also delivered across timelines within [a, b), it is

possible for the VEs to have advanced so far that S3FNet presents a packet

to a VE’s proxy with a timestamp that is smaller than the VE’s clock. This

risk seems unavoidable, owing to the coarse grained control we have over VE

execution, and when this occurs we deal with it by changing the packet’s

timestamp.

To understand and bound the extent to which timestamps may be mod-

ified, we need to carefully step through the assignment of timestamps, de-

scribed in the next section.

2.2.3 Virtual Time Advance

Our modification of the OpenVZ system converts execution time into virtual

time; a VE that has advanced in simulation time to t0 is given T units of

execution time, and run. At the end of the execution its clock is advanced

to time t0 +α ∗T , where α is a scaling factor used to model faster (α < 1) or

slower (α > 1) processing. It is important to realize that this is an approx-
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imation that treats only at a coarse level factors that affect execution time,

e.g., caching and pipelining effects. In addition, the scheduling mechanism

is not so precise that exactly T units of execution time are received, and the

VE’s actual execution time T ′ may slightly deviate from T . Nevertheless, in

order to keep all VEs in sync with respect to the clock, after execution the

VE’s virtual clock is explicitly set to t0 + α ∗ T .

In the OpenVZ system, the unit of scheduling (minimum execution time)

is a timeslice. We currently set timeslice length TS = 100µs, but TS is

tunable [2], and the details are discussed in Section 2.2.4 For the sake of

efficiency, the VE does not interact with the VE controller until after its

full timeslice has elapsed, at which point packets sent by the VE may be

collected, and packets may be delivered to the VE. As we arrange that the

emulation always runs ahead of the network simulation, we are assured that

each packet arrival lies in the temporal future of the VE-host, and so the

packet retains the timestamp received in the emulation.

During the execution, if a message send is performed by the VE, the

timestamp on the message is the computed virtual time at which the message

leaves the VE to enter the network. In particular, if that departure occurs

x units of measured execution time after the beginning of the timeslice, the

virtual time of the VE is computed as ts = t0 +α∗min{x, T}, where t0 is the

virtual time at the beginning of the timeslice. The min term is introduced

as it is possible for the VE to run longer than T units even though its clock

will be advanced only by α ∗ T units, and we need to have virtual time be

consistent with that fact. We can bound the amount by which any virtual

timestamp is artificially smaller up to α ∗Tε, where Tε denotes the maximum

deviation between T ′ and T . For the magnitude of TS we have used typically

(100 µs), Tε has tended to be relatively small. It can be up to TS in the

worst case, but has proven to be much smaller than that in practice.

At some point the timeline in S3F on which the VE-host is aligned ad-

vances its time to recognize the arrival, and normal simulation time advance-

ment techniques deliver the packet to its destination VE-host, say at time td.

Mechanisms yet to be described ensure that the simulation does not advance

farther in time than the VEs have advanced, and so td necessarily arrives to

a VE with a timestamp smaller than VE’s clock. Conceptually anyway, it

arrives to the VE later, precisely at the time when the VE begins its next

timeslice of execution. In some circumstances this can cause a functional
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deviation in VE behavior. For example, if the VE in any way “looked” for

a packet arrival during its previous timeslice at times td or greater, it would

not see it, and would react to the absence as coded. However, if the VE

behavior in the previous timeslice is insensitive to the presence or absence

of a packet, the late arrival poses no logical difficulties. When the VE looks

for a packet it will find one. From this we see that the effective arrival time

of the packet cannot be later than one timeslice TS than its timestamped

arrival time.

These observations are summarized more formally below.

Lemma 1 Let t0 be a VE’s clock at the beginning of an execution, and sup-

pose a packet is sent x units of execution time later. The timestamp on the

message presented to the network simulator is less than t0 + α ∗ x by no

greater than α ∗ TS, where α is the virtual/real time scaling factor and TS

is the timeslice length.

Lemma 2 Suppose a packet is delivered to a VE-host at virtual time td.

That packet is available to the VE no later than time td + α ∗ TS.

It is worth pointing out that we cannot construct an end-to-end bound on

the error of the packet’s timestamp without making some assumptions about

how network latencies are different between an arrival at time t0 + α ∗ x

versus an earlier arrival at time t0 + α ∗ TS.

The integration of the simulation and emulation framework is based on

the fact the both system can run on virtual time. The work includes design

of synchronization, event passing and virtual machine control mechanisms in

the hybrid system for safe and efficient experiment advancement. We also do

some small-scale experiments to illustrate how changes to timestamps made

by the system are bounded, and how these changes behave as a function of

the overall simulation load (and are empirically seen to be much smaller than

the guaranteed bound). Details are described in Section 2.4.

2.2.4 Variable Timeslice

Our virtual time system in OpenVZ can reduce the temporal error by us-

ing smaller timeslices. But the minimal allowed timeslice is subject to the

frequency of hardware timer interrupts. To achieve smaller timeslices, we
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need to raise the frequency of timer interrupts, i.e. the HZ value in Linux

kernel. For example, by raising the HZ value from 1000 to 4000, the smallest

allowed timeslice is 250 µs, rather than 1 ms. Actually, with HZ = 4000,

any timeslice length of n · 250 µs is allowed, where n is an integer. However,

changing the HZ value has some side effects to the Linux kernel, which must

be dealt with for the kernel to work properly. Such side effects are mainly

due to counter overflows or integer operation overflows [38], as some Linux

kernel developers did not anticipate that the HZ value might be set so large.

Higher HZ frequency and smaller timeslice has overhead, which comes from

at least two sources: (1) more frequent timer interrupt handlings, and (2)

more frequent context switches. We model the extra time consumed by each

timer interrupt as Tint, and model that consumed by each context switch as

TCS. Let TS be the length of a scheduler timeslice. Then the ratio of time

spent actually working during a timeslice to the length of that timeslice (i.e.,

system efficiency) is

ρ =
TS − TCS − k · Tint

TS
= 1− TCS ·

HZ

k
−HZ · Tint

where TS = k
HZ

, making k the total number of timer interrupts within one

timeslice of length TS. Observe that for fixed HZ, system efficiency is an

increasing concave function of k (i.e., increasing TS), which suggests (and will

be verified) that increasing TS from very small values will have the largest

positive impact on efficiency, after which efficiency approaches an asymptote

of 1 − HZ · Tint. As TS increases, accuracy decreases linearly. All of this

means that for a given accuracy constraint, e.g., no error greater than E, we

seek to maximize the expression above subject to k
HZ
≤ E. By concavity,

this occurs when k = 1, and HZ = 1
E

.

2.3 Implementation

We added two components to the S3F simulation engine to support integra-

tion with OpenVZ: the global scheduler, which coordinates the time advance-

ment of both emulation VEs and simulation entities; and the VE controller,

which is responsible for VE scheduling and message passing, such as packets,

emulation lookahead, between VEs and simulation entities. This section will
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illustrate how the system works by explaining the implementation details of

the two components and the decisions we made behind them.

2.3.1 Simulation/Emulation Synchronization

S3F supports parallel execution, which requires synchronization among multiple-

timelines. Latencies across communication paths established between outchan-

nels and inchannels are used to establish a simulation synchronization win-

dow, within which no events from an outchannel can be delivered to any

cross-timeline mapped inchannels. The windows are implemented with bar-

rier synchronizations. The upshot is that cross-timeline events do not have

to be immediately delivered since their receipt lies on the other side of a

barrier synchronization. The events can be buffered until the end of the syn-

chronization window, when the synchronized timelines exchange such events,

and integrate them into their target timelines’ event lists [1]. The larger the

synchronization window size is, the less frequent a simulator needs to stop

for global synchronization, and so achieve better performance. In terms of

pure network simulation, the channel mapping can be used to model links

among host network interfaces, and the latencies across the channels can be

constructed by the packet transfer time and the link propagation delay.

However, integration with the OpenVZ-based emulation brings new fea-

tures and constraints to the existing synchronization mechanism. First, em-

ulation and simulation never operate concurrently, therefore two clocks ac-

tually exist in the system: the current simulation time and the current em-

ulation time; there exist also two types of synchronization window: the em-

ulation synchronization window (ESW) and the simulation synchronization

window (SSW). The system first computes an ESW and runs the emulation

for that long, and then injects packets created during that window into the

simulator, at the end of the ESW. The new emulation events contribute to

the computation of SSW for the next simulation cycle. Both ESW and SSW

are calculated at S3F. Second, our system design ensures that the simula-

tion can never run ahead of the current emulation time. Third, once the

OpenVZ emulation starts to run, it has to run for at least one timeslice [8],

during which no simulation work can interrupt any VE. This system level

constraint affects the granularity of the system. Finally, the OpenVZ system
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introduces opportunities for offering real application specific lookahead for

increasing the size of ESW.

The notations used in this section are provided in the following list:

temu current emulation time: OpenVZ virtual time

tsim current simulation time

Eemu the set of VE-proxy entities in S3F

Esim the set of non-VE-proxy entities in S3F

ESW emulation synchronization window: the length of the next emula-

tion advancement

SSW simulation synchronization window: the length of the next simula-

tion advancement

α a scaling factor used to model faster (α < 1 ) or slower (α > 1)

processing time in OpenVZ system, details in Section 2.2.3

TS timeslice length in OpenVZ system, unit of VE execution time

ELi the event list of timeline i

ELemui the set of events in ELi that may affect the state of a VE, e.g. a

packet delivery to a VE

ELsimi the set of events in ELi that will not affect the state of a VE,

ELsimi ∪ ELemui = ELi

ni timestamp of next event in ELi; ni = +∞ if ELi = ∅

nemui timestamp of next event in ELemui ; nemui = +∞ if ELemui = ∅

nsimi timestamp of next event in ELsimi ; nsimi = +∞ if ELsimi = ∅

wi,j minimum per-write delay declared by outchannel j of timeline i

ri,j,k transfer time between outchannel j of timeline i and its mapped

inchannel k

si,j,x transfer time between outchannel j of timeline i and its mapped

inchannel x, where x aligns with a timeline other than i
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li,e emulation lookahead of entity e in timeline i, computed by VE

Controller in every ESW ; li,e = +∞ if e ∈ Esim

The scheduling mechanism used in the global scheduler is described in

Algorithm 1. It makes the emulation run first, and ensures the simulation

time never exceeds the emulation time. When the simulation catches up with

emulation, emulation is advanced again.

Algorithm 1 Global Scheduler

while true do
if tsim = temu then

compute ESW
run OpenVZ emulation for ESW (Algorithm 2)
inject packets to simulation

else
compute SSW
run S3F simulation (all timelines) for SSW

end if
end while

Equation (2.1) illustrates how ESW is calculated:

ESW = max
{
α ∗ TS, min

timeline i
{Pi} − temu

}
(2.1)

where Pi is the lower bound of the time when an event from timeline i can

potentially affect a VE-proxy entity in the simulation system, for the global

scheduler to decide the next ESW:

Pi = min

{[
min

(
nsimi , min

entity e
{li,e}

)
+Bi

]
, nemui

}
and Bi is the minimum channel delay from timeline i:

Bi = min
outchannel j

{
wi,j + min

inchannel k
{ri,j,k}

}
In our system, a packet is passed to VE Controller for delivery right after

the packet is received by a VE-proxy entity in S3F. As simulation is running

behind, the packet is not available to VE Controller until simulation catches

up and finishes processing that event. The Pi calculation prevents an VE

from running too far ahead and bypassing a potential packet delivery event.

Equation (2.2) illustrates how SSW is calculated:
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Figure 2.6: System Advancement with Global Synchronization, Emulation
Timeslice ≥ Simulation Synchronization Window

SSW = min
{
temu, min

timeline i
{Qi}

}
− tsim (2.2)

where Qi is the lower bound of the time that an event of timeline i can

potentially affect an entity on other timeline, for the global scheduler to

decide the next SSW :

Qi = ni + Ci

and Ci is the minimum cross-timeline channel delay from timeline i:

Ci = min
outchannel j

{
wi,j + min

inchannel x
{si,j,x}

}
As the simulation runs behind the emulation in virtual time, i.e. tsim can be

at most advanced to temu, events potentially generated from emulation can

be ignored when calculating Qi, as they all have timestamps no smaller than

temu.

When SSW is smaller than α ∗ TS, the simulation has to run multiple

synchronization windows to catch up to the emulation. On the other hand,

when SSW is larger than α ∗ TS, the emulation can run multiple time slices

in one emulation cycle. Figure 2.6 and Figure 2.7 illustrate the behavior of

the system in the two cases respectively.

In both cases, the simulation advancement is bounded by ESW. How-
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ever, in case 2, the simulation helps to improve the emulation performance

by computing a large ESW, so that emulation can run through over mul-

tiple timeslices before interacting with the VE controller, thereby enjoying

less synchronization overhead. In return, the emulation also provides event

information to the simulator, which could improve the simulation perfor-

mance with a larger SSW. A large SSW can be obtained by utilizing detailed

network-level and application-level information, such as minimum link delay

and minimum packet transfer time along the communication paths, or net-

work idle time contributed by the simulated devices that not actively initiate

events (e.g. server, router, switch), or from the lookahead offered by the

OpenVZ emulation, refer to Section 2.3.2.

2.3.2 VE Controller

The VE controller’s main responsibility is to advance the emulation clock.

The VE controller does not drive VEs directly, but allocates timeslices in

which to run. A VE is suspended and its virtual clock is paused, except

during an allocated timeslice. Once released, a VE runs until the timeslice

expires, with its virtual clock increasing as a scaled function of elapsed exe-

cution time [8].
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Each time the VE controller is invoked by the global scheduler, it is given

a window size (ESW) within which all VEs are to advance. Within an ESW,

all VEs are independent, i.e. no events from a VE can affect another VE.

This independence is either guaranteed by S3F according to channel delays,

or derives from the minimum VE scheduling granularity. The VE controller

delivers packets to VEs just before they begin to execute, and collects gen-

erated packets from them after they execute. The logic of VE controller is

described in Algorithm 2.

Algorithm 2 VE Controller

barrier = temu + ESW
for all V Ei do
V Ei.stop = barrier − α ∗ TS/2− V Ei.offset
V Ei.done = false
while V Ei.done = false do

deliver due packets to V Ei
give a timeslice to V Ei
(V Ei.clock keeps advancing while V Ei is running)
wait until V Ei stops
collect sent packets from V Ei
if V Ei is idle (has no runnable processes) then
V Ei.offset = 0
V Ei.clock = min(V Ei.nextPacket, V Ei.stop)

end if
if V Ei.clock ≥ V Ei.stop then
V Ei.offset += V Ei.clock − barrier
V Ei.clock = barrier
V Ei.done = true

end if
end while
calculate emulation lookahead for V Ei

end for
temu = barrier

When the VE controller gets control back after a non-idle VE has run a

timeslice, there is variability in the actual length of timeslice the VE con-

sumed, primarily due to the timing resolution of the Linux scheduler. Instead,

for a given ESW, whatever length of execution ends up being allocated, the

VE controller assumes it is precisely ESW and adjusts the clock accordingly.

Algorithm 2 is slightly more complex than this description, containing some

correction terms and handling idle VEs slightly differently.
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At the end of a VE controller cycle, the emulation lookahead is calculated

and conveyed to S3F through an API. The emulation lookahead is a duration

of future virtual time within which a VE will not send packets, so that it

will not affect the states of other hosts. In the test cases studied here we

use constant bit rate (CBR) traffic source which makes emulation lookahead

computation straightforward.

2.4 Error Analysis

We have seen already that timestamps may be changed, and have bounded

the magnitude of those changes. We now examine these changes empirically,

using a simple network which contains two emulation hosts. These two hosts

are connected via a link with 1 Gb/s bandwidth and 100 µs delay. The

timeslice TS is also 100 µs, and α is set to 1. During the experiment, a sender

application sends constant bit rate (CBR) traffic—meaning the packet inter-

arrival time is as constant as virtual time advance can make it—to a receiver

application in the other VE. The receiver loops over a blocking socket read,

yet has a background computation thread to keep the VE non-idle. For each

packet we trace its arrival time at different points along its path, which will

reveal where and by how much the virtual time changes. We record the

following times:

talker the packet is generated by the sender app

vcpull the sending timestamp presented to S3FNet

s3fnet the delivery timestamp computed by S3FNet

vcpush the packet is delivered and available to the VE

listener the packet is received by the receiver app

vcpusherr system error, equals to vcpush− s3fnet

For the sender application, we have tested 25 Mb/s, 100 Mb/s, and 400

Mb/s sending rate. The results are shown in Figure 2.8 for the 400 Mb/s

case. The x-axis indexes the packet, the y-axis shows the times associated
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with each packet. Slopes decrease with increasing sending rate because inter-

packet arrival times decrease.

Although we plot only one sending rate, the behavior of the error in each

case is very close, and in this case is bounded by 100 µs—the length of a

timeslice. Likewise, the effect of communication latency is the same in each

plot, and can be seen in Figure 2.8. As explained in Section 2.2.3, the sending

timestamp we put on a packet is exactly the virtual time when it leaves its

VE. There we see clear that talker and vcpull are nearly indistinguishable—

the only difference is constant processing delay from application layer to IP

layer. The gap between vcpull and s3fnet is the (constant) network latency.

Any gap between s3fnet and vcpush is due to the effect described before,

that a packet is not pushed to a VE until the VE’s clock is at least as large

as the packet’s arrival time. We know this gap is no larger than α ∗TS. The

data here confirms the theory, and shows that in this experiment the gap

is on average considerably small than one timeslice. The data occasionally

shows a gap between vcpush and listener, but this is not caused by our

system. Instead, it is caused by multi-task scheduling delay inside the VE,

in the same way it exists on a real machine.
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The α ∗ TS error bound is an absolute value. When the sender is sending

at a very fast rate, e.g. 400 Mb/s as shown, and the inter-packet duration is

small, such error and delay approach the inter-packet delay. When the sender

is sending at a slower rate, e.g. 100 Mb/s or 25 Mb/s, such error and delay

become negligible compared with the relatively large inter-packet delay. We

conclude that our system can provide sufficient accuracy for those scenarios

that can tolerate these errors. For scenarios that require higher accuracy,

one can reduce the length of timeslice, but at the cost of slower execution

speed [2].

2.5 Performance Analysis

The testing platform for conducting all the experiments is built on a Dell

PowerEdge R720 server with two 8-core processors (2.00GHz per core) and

64 GB RAM, and installed with 64-bit Linux OS. By enabling the hyper-

threading functionality, our network simulator can concurrently explore up

to 32 logical processors. Given the same size of a network model, i.e. iden-

tical topology, and traffic volume and pattern, we would like to investigate

means to improve the simulation execution speed without losing accuracy,

particularly, performance impact of (1) the number of timelines, and (2) the

size of synchronization window.

Number of Timelines: The concept of “timeline” in our testbed is de-

signed for exploiting parallelism of a network model. Simulated nodes, such

as hosts, switches, and routers, are partitioned into groups with user-specified

rules, such as geographic location or traffic balancing. Each group is aligned

to a timeline, and each timeline is assigned to a core during the model execu-

tion. Timelines are synchronized through barriers. By increasing the number

of timelines, the entire simulation work is distributed to more cores and thus

increases the degree of parallelism, at the overhead cost of synchronization.

In the first set of experiments, we set up a network with 1024 simulated hosts,

among which every two hosts pair up a server-client connection (512 links in

total) with 1 Gb/s bandwidth. Each sever is sending constant bit rate traffic

flow to its client, and the server-client pairs are evenly distributed among

timelines. The above settings minimize the impact of unbalanced simulation

workload among multiple timelines with no cross-timeline events, and well-
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Figure 2.9: Optimal Simulation Speedup on a Multi-Core Architecture
Platform

balanced traffic patterns. The inter-packet gap is set to 1 µs to generate

sufficient simulation workload. Each experiment is scheduled to run for 1

second in virtual time, and generates 1.54 G events in total. Figure 2.9 plots

the execution time in wall-clock time and event execution rate as we increase

the number of timelines.

The simulator shows a nearly perfect speedup behavior as we increase

the number of timelines up to 16: the execution time continues to drop in

half, and the event execution rate continues to be doubled as we double

the number of timelines. The improvement slows down when the number of

threads grows up to 32 due to the heavy involvement of the hyper-threading

technique. We have conducted the same set of experiments again with hyper-

threading turned off, and the comparison shows that using hyper-threading

can achieve a 1.36 speedup factor for our simulator when the number of time-

lines is greater than or equal to 32. The results show that given sufficient

workload within each synchronization window, our simulator can maximize

the hard-ware parallelism capabilities by creating the same number of time-

lines (i.e. software threads) as the number of available logical processors,

with an event rate as high as 40 million-events/second. Further increasing

the number of timelines gives us little performance gain. The aforemen-

tioned experimental results profile the best achievable speedup performance

of our simulator by maximizing the work in the parallel section of our sim-

ulator. The rest overhead is due to OS-dependent control elements, such
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as multi-thread scheduling and inter-processor management that are beyond

our control.

Synchronization Window: Synchronization windows indicate how long

the emulation or the simulation can proceed without affecting entities on

other timelines. The length of the windows are computed at synchronization

barriers based on the detailed network-level and application-level informa-

tion, such as minimum link delay and minimum packet transfer time along

the communication paths, or network idle time contributed by the simulated

devices that not actively initiate events (e.g. server, router, switch), or from

the lookahead offered by the OpenVZ emulation. In this set of experiments,

we investigate the performance impact of synchronization window on our

simulation/emulation testbed. We set up a network with 64 emulated hosts,

among which every two hosts pair up a server-client connection, and 32 links

in total. Each sever sends constant bit rate UDP traffic flow with constant

1500 byte packet size to its client. The emulation time slice is set to 1 ms,

and the networking environment created in S3FNet has 1 Gb/s bandwidth

and 1 ms link delay. We vary the sending rate with 100 Kb/s, 1 Mb/s and

10 Mb/s in the preceding scenarios and record both the emulation time and

the simulation time every 10,000 packets. We then pre-calculate a constant

lookahead based on the observed average inter-packet gap, essentially creat-

ing larger synchronization windows, and re-run the experiments for compar-

ison. We observe the nearly identical sending/receiving traffic patterns for

each scenario with and without lookahead, which indicates little experiment

accuracy loss with the presence of the lookahead. Figure 2.10 compares the

execution times for both emulation and simulation.

With emulation lookahead, the execution time, both emulation and simu-

lation, significantly reduces for 100 Kb/s and 1 Mb/s sending rate. Here is

the explanation: for 1 Mb/s sending rate, given 1500 byte packet size, the

average inter-packet time is around 12 ms, which equals to 12 timeslices; and

accurate emulation lookahead should predict that amount – promise that a

VE will not generate any events within the next such amount of time, and

offer this value to S3F for computing the next emulation synchronization

window (ESW). The new ESW increases to approximately 12 timeslices in

length and thus minimizes the emulation over-head. Since the emulation is

now running far ahead of time as compared with the case without emulation

lookahead, and no events are injected into the simulation’s event lists, the
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simulation also takes advantage of the empty event lists to compute a large

simulation synchronization window. Therefore, the execution times on both

simulation and emulation are significantly reduced, and same is true for 100

Kb/s case. However, little improvement is observed for the 10 Mb/s case,

because ESW generated by emulation lookaheads (1.2 ms) is close to one

time slice. Another observation is that by offering accurate lookahead, the

execution times for transmitting 10,000 packets with all the sending rates are

very close. This is actually one benefit with our virtual-time-embedded em-

ulation system that we can accelerate low traffic load emulation experiments

by utilizing available system processing resources.

Providing good simulation lookahead is always challenging for conserva-

tive network simulation, and our virtual-time-based simulation/emulation

testbed gives another opportunity for providing good emulation lookahead.

The aforementioned experimental results clearly indicate the huge perfor-

mance gain that a good lookahead mechanism can bring to our system, and

thus strongly motivate our ongoing work of investigating emulation looka-

head from source code/binary analysis.
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Figure 2.10: Execution Time Comparison with Lookahead (R - Sending
Rate, LA - Lookahead)
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2.6 Application-Level Fidelity Analysis

Validation reveals that there are network timing errors whose magnitude

depend on the length of a virtual machine execution timeslice. A natural

question asks to what degree these errors impact the behavior of applications.

For instance, if an application is relatively insensitive to these errors, we

can increase performance by allowing larger emulation timeslices. We study

a variety of applications with different network and CPU demands. We

find, surprisingly, that difference in application behavior due to simply using

OpenVZ often dominate the errors, implying that we need not be overly

concerned about errors due to larger timeslices.

2.6.1 Overview

Our testbed provides both functional and temporal fidelity, by embedding

the virtual machines in virtual time [8]. However, small temporal errors are

introduced by the OpenVZ design, on the scale of a timeslice given to virtual

machines, because OpenVZ interacts with a virtual machine only at the

beginning and end of a timeslice. This work asks how temporal errors affect

behavioral fidelity with respect to application-specific metrics. We study

applications that are network-intensive, and ones that are CPU-intensive.

We also evaluate behavioral fidelity on ICMP, UDP and TCP by studying

FTP, web browsing, ping, and iperf. Our study concerns three configurations:

native Linux, native OpenVZ, and our emulation/simulation testbed. By

comparing native Linux and native OpenVZ we identify deviations that are

due solely to OpenVZ’s implementation. Comparing native Linux and our

emulation/simulation testbed we see the impact of those errors and errors

introduced by our testbed.

The experimental results show that application timing errors introduced by

the virtual time system are bounded by the size of an emulation timeslice in

both network-intensive and CPU-intensive applications, and that the network

round-trip-time (RTT) may increase by as much as two emulation timeslices.

Applications whose metrics are not affected by changes in the RTT of that

scale are insensitive to emulation errors. We also see that errors introduced

by OpenVZ are generally larger than errors introduce by the virtual time

system, especially for TCP-based applications. The importance of these
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observations is that we can tune the virtual time errors by changing the

size of the emulation timeslice, and so, as a function of application, choose

timeslices that do not significantly impact application performance.

2.6.2 Experiment Setup

Figure 2.11 illustrates our experiment framework, which consists of three

components: an end-host running a server side application, an end-host

running a client side application and an intermediate host that serves as

a traffic controller. The traffic controller is a Linux application for config-

uring test scenarios with various network conditions including bandwidth,

packet drop rate and packet delay. We duplicate the same network topol-

ogy onto three platforms. The platform in Figure 2.11(a) consists only the

physical hosts, which serves as the ground truth data collector. The second

platform, as shown in Figure 2.11(b), has end-host applications running in-

side the OpenVZ virtual machine (VE) instead of the real operation system;

comparison of behaviors on this with those of the applications on the first

platform reveals the difference introduced by the OpenVZ techniques. The

same topology is also created in our virtual-time system enabled testbed, as

shown in Figure 2.11(c). The setup is composed of three virtual machines

running on a single physical machine. Comparison of behaviors on this with

behaviors on the pure OpenVZ topology reveals the errors our virtual time

techniques introduce.

We use the identical hardware across all three platforms. Each physical

machine is equipped with a 2.0 GHz dual-core processor, 2 GB memory and

gigabit Ethernet network interface cards. Also, we create the same software

environment for all platforms, including the same OS (Red Hat Enterprise

Linux 5 with 2.6.18 kernel), the same version of libraries and drivers, the

same testing applications and the same setting of network parameter (e.g.

sending/receiving buffer, ip routing table). Finally, the traffic controller al-

ters data packets in a deterministic manner, coordinated across architectures,

using a random number generator to select packets to drop on the flows of

interest. Therefore, when the ith packet is dropped in any one of the config-

urations, the ith packet is dropped in all of them. In this way, we ensure that

on an experiment-by-experiment basis, we are comparing precisely the same
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Figure 2.11: Testbeds Setup (a) Native Linux (b) Native OpenVZ (c)
OpenVZ with Virtual Time

context for measuring the application-level network metrics.

2.6.3 Experiment Data and Analysis

Network-Intensive Applications

The first set of applications we study are network-intensive applications

(ICMP, UDP, TCP). The experiments, run on each testbed platform, vary

bandwidth, delay and loss. The data shown is based on a 100 µs timeslice.

The platform index number 1, 2 and 3 used in every table in this section

represents the native Linux, native OpenVZ and OpenVZ with virtual time

system respectively as shown in Figure 2.11.

ICMP We use the ICMP protocol by pinging from one end-host to the

other end-host under different network conditions controlled by the interme-

diate node. Ping is the commonly used utility application for testing the

reachability of a host on an IP-based network and for measuring the round-

trip time (RTT) for messages (ICMP echo request and response packets) sent

from the originating host to a destination host and record any packet loss.

The measured RTTs are listed in the Table 2.1.

Comparison of Testbed 1 (native Linux) and Testbed 2 (OpenVZ) shows
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the processing delay in bridging the veth and eth interface. We see the

total processing overhead is approximately 0.1 ms, a cost due entirely to

using OpenVZ, independent of virtual time overheads. A round-trip in this

topology contains four hops (from Machine 1 to Machine 2 and back to

Machine 1) and thus the worst case error is 400 µs. Indeed, the largest

observed error is about 200 µs, and this matches the error bound of our

system.

UDP We set up an iperf [39] UDP server and client pair at the two end-

hosts. The iperf client sends constant bit rate (CBR) UDP traffic under

various network conditions, and the packet loss rate, throughput and jitter

are recorded in Table 2.2 for comparison.

The client sends data at a CBR equal to the link bandwidth. However, the

bandwidth specified in iperf is the end-to-end (application layer) bandwidth.

When the data is transmitted over the network and is added the network

headers, the raw network data rate slightly exceeds the available bandwidth.

This is the reason we observe packet losses even in the cases that link are not

lossy, and those losses are caused by buffer overflow at the traffic controller.

We observe nearly identical results across all three platforms, especially

the throughput has smaller than 1% error. Unlike TCP, there is no feedback

loop in UDP, and the temporal error of a single packet does not propagate

and cascade.

TCP - Iperf We set up the iperf TCP server and client and use the traffic

controller to adjust the length of delay, loss rate and the available bandwidth

to create various network testing scenarios. All the TCP related parameters,

such as size of sending buffer and receiving buffer, are set to be the same (128

KB) in native Linux and OpenVZ. We keep sending traffic for 30 seconds

for all the experiments and record the throughput, which is the primary

indication of TCP connection performance, in Table 2.3.

Throughputs from platforms 2 and 3 are very close, under all cases, sug-

gesting that the small errors in virtual time do not impact throughput evalua-

tion. However, in our first trial of these experiments we saw a large difference

between platforms 1 and 2, with (surprisingly) platform 2 yielding a signifi-

cantly larger throughout! Investigation revealed that OpenVZ configuration

allows for control of certain TCP buffer sizes, and that were set to be larger
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Table 2.2: UDP - Iperf

Network Condition Result

Loss Delay BW Loss (%) Throughput (Mb/s) Jitter (ms)

(%) (ms) (Mb/s) 1 2 3 1 2 3 1 2 3

0 1 10 1.6 1.6 1.6 9.73 9.73 9.73 0.067 0.043 0.108

0 1 100 2.5 2.4 2.4 97.9 98.0 98.0 0.070 0.046 0.055

0 1 400 3.3 3.4 3.3 389 392 392 0.046 0.032 0.038

0 10 10 1.7 1.7 1.7 9.73 9.73 9.73 0.052 0.048 0.057

0 10 100 2.5 2.5 2.5 98.0 98.0 98.0 0.056 0.050 0.060

0 100 10 2.6 2.7 2.5 9.73 9.71 9.73 0.101 0.128 0.145

5 10 10 5.1 5.1 5.1 9.48 9.54 9.48 0.039 0.044 0.037

5 10 100 5.0 5.1 4.9 95.5 95.4 95.6 0.042 0.050 0.062

10 10 10 10 10 10 8.98 9.03 8.98 0.056 0.051 0.055

than native Linux uses. After we aligned all TCP configurations possible,

we still see differences between native Linux and native OpenVZ. In partic-

ular, in all the loss-free scenarios, TCP traffic in the native Linux has better

performance than the OpenVZ-based Linux.

To understand the root cause of this difference, we instrumented the code

to print out the size of the TCP send window, as a function of segment

number; Figure 2.12 plots the result when we induce network conditions

delay = 1 second, loss = 0, and bandwidth = 1 Mb/s. Platforms 2 and 3

have essentially identical results, but a significant difference is seen between

platforms 1 and 2, with the send window size in congestion avoidance mode

bing 34 for native Linux and 29 for OpenVZ. We also see different growth

in the window size during the slow start mode. The differences strongly

suggest some fundamental difference between the TCP implementation or

configuration in native Linux and native OpenVZ.

TCP - FTP FTP traffic is generally very tolerant of delay and loss. We

setup an FTP server and an FTP client, programming the client to download

a file. All the cases use a network bandwidth of 10 Mb/s. The throughput,

transfer time, and connection establish time are recorded in Table 2.4.

In the first four loss-free cases, Testbed 2 and Testbed 3 behave similarly,

but they are slightly different than Testbed 1 (up to 3% difference in through-

put). The reason is the same as previous iperf TCP, as FTP uses TCP. The

difference affects only the file transfer time but not the connection estab-
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Table 2.3: TCP - Iperf

Network Condition Result

Loss Delay BW Throughput (Mb/s)

(%) (ms) (Mb/s) 1 2 3

0 1 10 9.63 9.59 9.59

0 1 100 94.1 94.5 95.7

0 1 400 131 129 133

0 10 100 17.9 15.8 15.8

0 100 10 1.79 1.60 1.61

0 1000 1 0.157 0.137 0.133

1 10 10 4.06 4.89 4.83

2 10 10 2.93 3.25 3.26

5 10 10 1.74 1.70 1.78

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  2  4  6  8  10  12  14

T
C

P 
W

in
do

w
 S

iz
e 

(M
T

U
)

Number of Round Trip Time

Native Linux
Native OpenVZ

OpenVZ with Virtual Time

Figure 2.12: TCP Window Size

42



lish time, as the server and client only exchange control messages during

the connection establish phase. These messages are delay sensitive but not

throughput sensitive.

In the last three cases with losses, the throughput differences among three

testbeds are enlarged. Again this is due to the difference in TCP implemen-

tation. Although our traffic controller outputs deterministic packet losses,

they may behave differently on a same single packet loss, causing the differ-

ent in achievable TCP throughput. During the connection establish phase,

no packet losses are observed, thus all three testbeds have similar connection

time.

TCP - HTTP Hypertext Transfer Protocol (HTTP) is the data commu-

nication protocol for the world wide web. Web browsing is generally tolerant

of moderate delay and loss. We setup an apache server on one end-host [40]

and a text-based web browser, named lynx [41], on the other end-host. We

grabbed the openvz.org site with one level depth (105 files, 2848KB in total)

and host those contents in our apache server. In this way, we can produce

some typical web traffic which consists of a series of small and bursty file

transfers. In the experiments, the client is configured to traverse all the first-

level links and reports the total traversal time. The cache is cleared at the

beginning of every run. The network bandwidth is set to 10 Mb/s for every

experiment. We run each experiment for 10 times and the results are shown

in Table 2.5.

We observe that traversing all web pages takes longer time in the OpenVZ-

based Linux than in the native Linux. This is due to the processing delay

in bridging the virtual network interface in OpenVZ (e.g., “veth0” ) and the

real Ethernet interface (e.g., “eth0”).

Also, testbed 3 has a smaller traversal time than testbed 2 in all the loss-

free scenarios. The reason is that our embedding of OpenVZ in virtual time

does not yet account for delays in file I/O, a deficiency in our implementation

we will shortly be rectifying.

In addition, large randomness is observed for all the cases with packet loss.

We carefully studied traces of different runs, and discovered this is due to

multi-threaded web client/server applications. In particular, the web client

application launches multiple TCP connections to request objects from the

server and each connection is a thread. Since the multi-thread scheduling
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in Linux is non-deterministic, the packet sending sequences can be different

across multiple runs of each test case. Therefore, the traffic controller could

drop different packets though itself is designed to produce packet loss pattern

deterministically. The dropped HTTP packets are not uniformly important

— control packet losses have larger impact on the overall timing than do

data packet losses. Such randomness in the application behavior is not in-

troduced by our system and should be expected in a multi-thread execution

environment.

Table 2.5: HTTP

Network Condition Result

Loss Delay Website Traversal Time (s) Stddev (s)

(%) (ms) 1 2 3 1 2 3

0 1 5.1 6.0 4.5 0.0 0.0 0.0

0 10 12.3 12.5 11.9 0.1 0.1 0.1

0 100 91.6 92.2 91.6 0.1 0.1 0.1

1 100 107.4 108.8 109.1 2.2 3.7 1.4

2 100 128.1 129.9 130.2 9.2 9.8 4.6

5 100 230.7 231.5 230.6 36.3 45.0 20.5

Larger emulation timeslice The network round-trip time is increased by

the emulation timeslice. As much as one timeslice is added on the server side,

as it may take that much additional time for it to recognize a packet, and as

much as one additional timeslice may be added for the client to recognized

the server’s response. These delays obviously directly impact “ping”, but

they also impact TCP and applications that use it. TCP throughput is

approximately RWS/RTT , where RWS is the receiver window size and

RTT is the round-trip delay. So, for instance, in our experiments where

the network latency is 1 ms, using an emulation timeslice of 1 ms causes

RTT to increase from 2 ms to 4 ms, effectively cutting throughput in half.

Experiments using larger emulation timeslices confirm this sensitivity. This

gives us some guidance on choice of emulation timeslice in network intensive

applications using TCP.
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CPU-Intensive Applications

For CPU-intensive applications, we implemented the Client Puzzle protocol

[42], which is used in many proof of work schemes for managing limited re-

sources on a server and providing resilience to denial of service (DoS) attacks.

In this protocol, when a client initiates a connection to a server, server will

send client a puzzle to solve. The connection will be established only if the

client correctly solve the puzzle. In particular, a puzzle is essentially a hash

inversion problem, which currently has no efficient algorithm to solve but

using brute force search. Table 2.6 documents the elapsed time for the client

to set up a connection with the server. For consistency, the server is always

using the same puzzle, but the client has no caches of previous puzzles. Each

experiment uses a network bandwidth of 10 Mb/s.

We can see both Testbed 2 and Testbed 3 have very similar runtimes, yet

Testbed 1 has slightly smaller ones. This is due to the overhead introduced by

OpenVZ virtualization. Such overhead is small (around 3%), and it matches

the advertised overhead of OpenVZ. The simulation/emulation overheads are

excluded from the virtual clock of a container, and the container perceives

time as if it were running independently. Moreover, we notice that Testbed

3 has a smaller standard deviation in runtime, indicating that its runtime

is more stable and more repeatable. This is due to the virtual time system,

which only counts the execution time performed by a VE into its virtual

clock, excluding most other activities that may affect its runtime.

We conclude that our timeslice-based virtual time implementation yields

high temporal fidelity not only for network packets but also to CPU compu-

tations. When the scheduler gives a timeslice to a VE, the actual amount

of execution time received by the VE is usually slightly different from the

timeslice length, due to some overhead and some interrupt-disabling routines

in the Linux kernel. Our virtual time system uses an offset mechanism to

compensate such difference, making the CPU computation time correct in

long term [3]. Without such mechanism, application runtime is less accurate

and less repeatable.
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Table 2.6: Puzzle

Network Condition Result

Loss Delay Average Time (s) Stddev

(%) (ms) 1 2 3 1 2 3

0 1 5.405 5.585 5.595 0.060 0.086 0.001

0 10 5.407 5.630 5.657 0.076 0.071 0.014

0 100 5.947 6.119 6.189 0.077 0.075 0.004

0 1000 11.383 11.593 11.585 0.091 0.059 0.004

2.7 Fast Background Traffic Simulation Model

While virtual-machine-based emulation allows us to run unmodified software

in our testbed, the simulation primarily offers the accurate and fast net-

work environment for large-scale experiments, such as providing an accurate

and fast network environment (layer 3 and below), efficiently simulating and

modeling the background traffic generated by the large number of virtual

nodes. When conducting large-scale network simulation experiments, the

cost of simulating the network can easily overwhelm the overall cost of per-

forming the simulation experiment. Therefore, we develop several efficient

Ethernet switch models based on the data collected on the real switches [5];

we also develop techniques for efficiently modeling background traffic through

switches/routers that use First-Come-First-Serve and Fair Queueing schedul-

ing in our testbed.

2.7.1 Overview

In many network applications, only a small fraction of traffic is of specific

interest. For example, in models of the power grid we may be more interested

in the detailed behavior of some specific flows (e.g. a DNP3 or Modbus

connection between a control station and a particular substation), and be

interested in other flows only in so far as they consume resources and affect

the behavior of the detailed flows. In experiments where real devices are

embedded into the simulator, it is challenging to meet the real-time constraint

given the fact that the network being simulated has hundreds of thousands
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of devices and (typically) tens of thousands of flows represented at any given

time. Therefore, there is a strong motivation to have efficient multi-resolution

traffic models, in which background traffic is modeled with much less details

than foreground traffic.

A high performance background traffic model is proposed and validated

in [43]. The model aggregates the background flows between network access

points, transforms the dependencies among the flows into a reduced system

of non-linear equations, and efficiently solves the system using fixed-point

iteration. One foundational assumption of the model is that the network

switches and routers manage queueing using First-Come-First-Serve (FCFS)

scheduling. However, in reality, such devices often have schedulers that pro-

vide rate proportional service [44], such as round robin (RR), weighted round

robin (WRR) [45] and virtual clock [46]. Indeed, many commercial switches

use round robin based scheduling due to the low time complexity O(1) and

low implementation cost [47].

We investigate two Gigabit Ethernet switches, 3COM 3CGSU08 and Net-

Gear GS108v2 based on the traces collected with a unique testbed. The

testbed we created can generate and capture Gigabit Ethernet traffic at line

rates, and measure precisely what the latency and loss patterns are through

a switch, for sequences of millions of frames. The experimental results reveal

the FCFS behavior in the NetGear switch and Fair Queuing (FQ) behavior in

3COM. Based on analysis of the real data, we developed an algorithm for the

FQ scheduler, integrated it with the existing algorithm based on the FCFS

scheduler. We then validated the model in terms of convergence behavior,

simulation speed and accuracy, and compared the simulation results between

the FCFS networks and the FQ networks.

2.7.2 Measurement

Testbed

A comprehensive study of a Gigabit Ethernet switch, such as the frame loss

and delay patterns, output rate and drop rate of each flow, requires a testbed

to do the following:

• Generate traffic up to line rate with user-configured parameters such
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as frame size, sending rate and inter-frame gap.

• Record frame delays and arrival orderings with microsecond resolution.

• Capture frames at line rate with little loss.

We built a testbed that uses hardware to instrument, transmit, and capture

Ethernet frames at line rates. Figure 2.13(a) depicts our solution. Traffic is

generated using a four-port NetFPGA card [48], [49]; the frames to send can

be loaded from a pcap file with user-specified sending rate. A 4.5 G4 Endace

DAG card [50] is the receiving end, which places time-stamps on received

frames using a clock that has 10 ns resolution; the card can also capture

and store millions of frames with zero loss at 1 Gb/s. In order to time the

passage of a frame through a switch, we took advantage of the NetFPGA

card’s ability to simultaneously send identical flows from each port. Two

identical flows are generated from the NetFPGA to the same destination, for

example, in Figure 2.13(a) a frame is sent simultaneously out on ports N1

and N4 of the NetFPGA card. One instance arrives at port D4 of the DAG

and is time-stamped on receipt. The other enters the switch via port S1, is

routed out via port S5, and arrives at the DAG on port D1 where it is time-

stamped. The difference in time stamps is the delay through the switch (and

time on the wire from switch to DAG). To validate the approach, we replaced

the switch with a wire and calculated the difference under a 1 Gb/s sending

rate. The measured delay has mean 0 ns and standard deviation 0.004 ns,

which is low enough given the microsecond delay in the switch. This design

does not require clock synchronization between the NetFGPA card and the

DAG card.

The data flows generated in the experiments were Constant Bit Rate

(CBR) Ethernet raw frames in pcap format, and a sequence number was

added into each frame. The frame size is fixed at 1500 bytes to minimize

the inter-frame gap and so maximize the sending/receiving rate. We gener-

ated one million frames for every flow, in every experiment. Post analysis

of received frames can identify the missing frames by analyzing the sequence

numbers. Likewise the difference between timestamps on frames with iden-

tical sequence numbers (one which passed directly to the DAG, the other

which passed first through the switch) gives that frame’s delay. In addition,

we can also calculate the output rate and the drop rate of each flow. Both
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cards are placed on the same PC (four dual-core 2.0 GHz CPUs running

CentOS 5.2). We captured data from two 8-port Gigabit Ethernet switches:

3COM 3CGSU08 and NetGear GS108v2. They are all simple low-end com-

modity switches with no configuration interface available, and every port is

identical. All ports were connected by cat-6 Ethernet cables.
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Figure 2.13: Testbed Overview and Experiment Setup

Experiment and Data Analysis

The first set of experiments (see Figure 2.13(a)) monitored a single flow whose

sending rate varies from 100 Mb/s to 1 Gb/s with 100 Mb/s increment, with

no background traffic. We observed that the delay in both switches behaves

constantly with no loss, about 13 µs for the NetGear switch and 18 µs for

the 3COM switch. The delay added by each switch has the same mean

value under any sending rate up to 1 Gb/s and the variance is close to 0 µs.

This shows that the switches handle line rate without loss, the switches have

significantly different delays, and that with deterministic inter-arrival times

those delays are constant.

In the second set of experiments, we kept the single flow, and added various

combination of background traffic flows going through other ports, such as

three parallel 1 Gb/s CBR flows (see Figure 2.13(b)) and five 1 Gb/s CBR

flows from five input ports to one output port (see Figure 2.13(c)), other
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than the one targeted by the monitored flow. These experiments revealed the

same behavior of delay and loss on the monitored flow as we saw in the first

experiments when there were no background flows. From these experiments

we learned that (1) both switches can handle nearly 1 Gb/s flows at each

output—no frame losses were observed until the total rate of the flows to

the same output port reached 988 Mb/s, and (2) flows coming from different

source ports and going to different destination ports do not affect each other.

The third set of experiments monitored the output rate of three flows from

three input ports to the same output port, as shown in Figure 2.13(d). Flow

1 moves at 100 Mb/s, flow 2 moves at 500 Mb/s, and flow 3 varies from 100

Mb/s to 1 Gb/s with a 100 Mb/s increment. Table 2.7 shows the results

from the NetGear switch and Table 2.8 shows the results from the 3COM

switch. When total input rate of the three injected flows does not exceed

the switch’s service capacity (which is 1 Gb/s in theory and 988 Mb/s as

observed), both switches experienced zero drop rate on every flow. When

the total input rate exceeds the maximum service rate, the NetGear switch

dropped frames in all the three flows and the drop rate is almost same.

However, for the 3COM switch, we observed that (1) all frames in flow 1

(100 Mb/s) were received, and (2) frames in flow 2 and 3 (≥ 500 Mb/s)

equally share the remaining bandwidth. The implication is that all flows

have the same bandwidth reservation (≈ 333 Mb/s) and the switch served

the connections in proportion to their reservation, and then distributes the

extra bandwidth equally among the active flows.

To investigate switch behavior, we collected the individual flow’s detailed

delay and loss patterns. By utilizing all four ports of the NetFPGA card, the

testbed can monitor delay and loss patterns of two flows. We removed flow

3 in Figure 2.13(d) and ran the fourth set of experiments to monitor flow 1

and flow 2. The sending rates on both flows were varied from 100 Mb/s to 1

Gb/s with a 100 Mb/s increment. Figure 2.14(a) and (b) show one sample

pattern of two input flows with sending rates 900 Mb/s and 300 Mb/s—

Figure 2.14(a) describes the 3COM switch and Figure 2.14(b) describes the

NetGear switch. Frames are ordered according their arrival timestamp. The

delay is plotted on the y-axis and a value zero represents a loss. The NetGear

switch dropped frames from both 900 Mb/s and 300 Mb/s flows, in bursts,

while the 3COM switch dropped frames only from the 900 Mb/s flow, not in

bursts. Indeed, as we increased the rate of the slower flow, the 3COM switch
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Table 2.7: NetGear, Results of the Three Input Flows to One Output Port
Experiment

Input Rate (Mb/s) Output Rate (Mb/s) Drop Rate
Flow 1 Flow 2 Flow 3 Flow 1 Flow 2 Flow 3 Flow 1 Flow 2 Flow 3

100 499 100 100 499 100 0 0 0
100 499 200 100 499 200 0 0 0
100 499 299 100 499 299 0 0 0
100 499 399 98 492 394 0.02 0.01 0.01
100 499 499 90 447 447 0.10 0.10 0.10
100 499 599 83 414 487 0.17 0.17 0.19
100 499 699 77 383 525 0.23 0.23 0.25
100 499 799 72 359 554 0.28 0.28 0.31
100 499 899 68 339 578 0.32 0.32 0.36
100 499 988 65 316 604 0.35 0.37 0.39

Table 2.8: 3COM, Results of the Three Input Flows to One Output Port
Experiment

Input Rate (Mb/s) Output Rate (Mb/s) Drop Rate
Flow 1 Flow 2 Flow 3 Flow 1 Flow 2 Flow 3 Flow 1 Flow 2 Flow 3

100 499 100 100 499 100 0 0 0
100 499 200 100 499 200 0 0 0
100 499 299 100 499 299 0 0 0
100 499 399 100 486 399 0 0.03 0
100 499 499 100 443 442 0 0.11 0.11
100 499 599 100 443 442 0 0.11 0.26
100 499 699 100 443 442 0 0.11 0.37
100 499 799 100 443 442 0 0.11 0.45
100 499 899 100 443 442 0 0.11 0.51
100 499 988 100 442 443 0 0.11 0.55
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did not drop any frames until it reached 500 Mb/s. The delays of both flows

increase together and stabilize at same level for the NetGear switch, while the

delay of the two flows stabilized at different values in the 3COM switch. The

distinctive behavior of the two switches can be explained by different schedul-

ing policies as studied in [5]. The scheduler in the NetGear switch and the

3COM switch can be modeled respectively by a FCFS server and a weighed

round robin server, which belongs to the class of rate proportional server [44].
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Figure 2.14: Delay/Loss Pattern, Two Input Flows to One Output Port, (a)
3COM (b) NetGear

In the fifth set of experiments, we injected three flows into the switch,

where flow 1 and flow 2 shared the same input port (S1) and flow 2 and flow

3 shared the same output port (S7), as shown in Figure 2.13(e). The input

rate of flow 3 is fixed to the line rate (988 Mb/s), which ensures the sum of

flow 2 and flow 3 would always be greater than the maximum service rate and

would result frame losses at outport S7. We want to observe flow 2’s impact

on flow 1 when flow 2 itself is congested. Table 2.9 shows the output rates for

both switches. The results show that the output rate of flow 1 is always equal

to its input rate for both switches. Further experiments actually reveal the

same behavior of delay and loss on flow 1 as we saw in the first experiment.

Therefore, flow 2 does not affect flow 1 at all. This can be explained by

the virtual output queue, in which frames are classified according to their

destination MAC addresses upon arrival at the input port. The frames with

different destination MAC will then be processed independently. In addition,
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flow 2 and flow 3 share the bandwidth identically as in the third and fourth

experiments. We learn then that flows going to different destination ports

do not affect each other. It is reasonable to simplify a switch model by

modeling its output ports individually and independently. Therefore, our

proposed background traffic model uses the output port as a basic element.

Details will be discussed in next section.

Table 2.9: Experimental Results: Three Flows with Two Sharing One Input
Port and Two Sharing One Output Port

Input Rate (Mb/s) NetGear Output Rate (Mb/s) 3COM Output Rate (Mb/s)
Flow 1 Flow 2 Flow 3 Flow 1 Flow 2 Flow 3 Flow 1 Flow 2 Flow 3

99 889 988 99 466 521 99 493 495
198 790 988 197 435 552 197 491 497
329 659 988 329 404 583 329 492 496
494 494 988 493 338 649 493 492 496
659 329 988 658 258 729 658 329 658
790 198 988 790 167 820 790 197 790
889 99 988 888 90 897 888 99 888

We modified the input pcap file of flow 1 by redirecting the source IP

address on half of the frame to a different source IP address, and used the

modified traffic input to conduct all the five sets of experiments again. The

results were exactly same, which means the two switches use only source and

destination MAC address to differentiate flows, nothing above the layer 2

header is used by the switches. Therefore, it is reasonable to aggregate flows

on a per input port basis to output port pair.

From all the experiments, we learned the following important points which

served as guidelines for our background traffic modeling.

• Different switches have different scheduling policy, FCFS (as revealed

in the NetGear switch) and FQ (as revealed in the 3COM switch) are

two common types.

• Flows going to different output ports do not influence each other, and

thus a switch model can be divided into several independent output

port models.

• Flows with the same input and output port can be aggregated.

54



• If the sum of input rates is no greater than the maximum service rate,

i.e. the line rate, each flow’s output rate is equal to its input rate with

zero loss.

2.7.3 Coarse-Grained Background Traffic Modeling and
Simulation

Problem Formulation

The network being studied consists of n access points; the backbone is built

using Gigabit Ethernet switches. We are interested in how the network

shapes coarse-grained background traffic flows along the communication path

from an ingress node to an egress node. In our model, the simulation time is

discretized into units of length ∆, and we use tk to denote k ·∆(k = 0, 1, 2...).

For any ingress-egress pair < Pi, Pj > (1 ≤ i, j ≤ n), we use Ti,j(t) to denote

the ingress rate of the corresponding aggregate flow at time t. Since the

simulation time is advanced by constant time-step ∆, we need to discretize

the ingress rate for every aggregated flow. During the time-step [tk, tk+1], the

traffic volume injected at ingress node i to egress node j is
∫ tk+1

tk
Ti,j(t) dt.

The burstiness at time scales smaller than ∆ is smoothed. To ensure that

the same amount of traffic is generated, the ingress rate at the discretized

time k ·∆ is 1
∆
×
∫ tk+1

tk
Ti,j(t) dt.

All the nodes in our model are connected with unidirectional links, un-

derstanding that we can model a bi-directional link as a pair of these. The

sending endpoint of a link is attached to a switch’s output port. When mul-

tiple aggregate flows multiplex at the output port at time tk, the bandwidth

allocation to each flow is governed by the scheduling policy, which varies from

switch to switch. A switch is modeled as a group of output ports according

to the experimental results in Section 3.3.3.

We assume that the resource consumption of certain types of flows as well

as the forwarding table of a switch change relatively infrequently. We can

define a reasonable time-step, say the maximum TCP round-trip time among

all flows. This allows the traffic demand generation logic to be responsive

to network conditions at a TCP time-scale (i.e., react to loss on a flow).

The resource consumption and the data forwarding paths are determined/re-
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evaluated only at the beginning of the time-step, and treat the consumption

and paths as invariant for the rest of the time-step. These flows can be made

sensitive to those flows modeled with higher resolution, but only at the fixed

update points.

The model must capture the competition between foreground and back-

ground flows for link bandwidth. At the beginning of each time-step, for

each port, we compute an estimated foreground input rate based on recent

observations (or even known predictions, if such were available). As we com-

pute new flow rates, for that port, we treat the estimated foreground flow

exactly as any other flow. The fair contribution of foreground traffic is thus

considered as we allocate bandwidth for the background traffic.

Model and Algorithm Description

The goal of our algorithm is this: given a description of flow intensities at

ingress nodes, efficiently determine link loads throughout the intermediate

switches, and determine flow intensities at the egress nodes. Each flow is

associated with a flow rate and a state variable, which can be settled, bounded

or unsettled. A settled flow has a finalized flow rate; a bounded flow has a

known upper bound on its flow rate; a unsettled flow is neither bounded or

settled. A switch is modeled as a few independent output ports. Each port

is in one of the three states: resolved, transparent and unresolved. A port

is resolved if all its input flows are settled. A port is transparent if not all

of its input flows are known, but the sum of the input flow rate is less than

the maximum service rate. A port is unresolved if it is neither resolved or

transparent. The experimental results in Section 3.3.3 show that for switches

using either FCFS scheduling or FQ scheduling, all the output flow rates can

be determined at a resolved port; at a transparent port, a flow’s output rate

is identical to its input flow rate.

The algorithm proposed in [43] works well on networks whose switches

use FCFS scheduling. It transitions through four phases, each time-step:

flow update computation, reduced graph generation, fixed-point iterations

and residual flow update computation. Phase I propagates the flow rate and

state from ingress points throughout the network; the goal is to settle flows

and resolve as many ports as possible. We are necessarily left with circular

dependencies among some flow variables, the remaining phases address these.
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Phase II identifies all the flow variables whose values are circularly dependent,

and constructs a dependency graph whose vertex set is composed of all output

ports with unresolved state and nonzero out degree. The unknown flow rates

are the solution of a nonlinear set of equations. Phase III sets up and solves

these equations using fixed point iteration. Finally, phase IV substitutes the

solutions into the system and finishes the computation.

To modify this algorithm for FQ switching we must reformulation some of

the phase I rules to be applied at FQ switches. Other phases are the same;

details and validation can be found in [43]. The parameters used by the

phase I algorithm are explained as follows:

Sp State of port p ∈ {Resolved, Transparent, Unresolved}

np Total number of input flows of port p

Up Bandwidth of port p, i.e. the maximum service rate of port p

Fp Set of input flows passing through port p

Sini,p State of input flow i at port p ∈ {Settled, Bounded, Unsettled}

Souti,p State of output flow i at port p ∈ {Settled, Bounded, Unsettled}

λini,p Input rate of flow i passing through port p

λouti,p Output rate of flow i passing through port p

Λin,p Sum of all input flow rates into port p

Λsettled
in,p Sum of all settled input flow rate of port p

Ri,p Reserved bandwidth for input flow i of port p, for FQ

Ep Total extra bandwidth available (bandwidth reserved but not actu-

ally used) for port p, for FQ

mp Number of flows not yet processed at port p, for FQ

In the initialization stage of each time-step, all the ingress nodes gener-

ate traffic. Thus, the ingress nodes are in the resolved state, and all the

corresponding output flows are settled. All the switches and egress nodes

are in the unsettled state and all their connected flows are in the unsettled
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state. The changes at the ingress nodes then propagate through the entire

networks through a three-step algorithm and loops until no more ports and

flows change their rates and states.

Step 1 is to decide the state of a port p based on the input flows.

Sp =


Resolved if ∀i ∈ Fp, Sini,p = Settled

Transparent if Λin,p ≤ Up

Unresolved else

Step 2 calculates the rate and state of all the output flows of port p. Rules

are selected based on the port state and the scheduling policy of the switch.

They are summarized in Table 2.10. For a resolved port, all the input flow

rates are known, therefore all the output flow rates can be computed and all

the out flow states can be determined. For a transparent port, the rate and

state of all the output flows is same as the corresponding input flows. For

a unresolved port, the goal is to determine the upper bound of its output

flows. If the corresponding input flow is settled, the upper bound is derived by

ignoring all bounded input flows. If the corresponding input flow is bounded,

the upper bound is derived by ignoring all other bounded input flows and

treat itself as settled with rate set to the bounded rate.

Step 3 is to pass the rate and state of the output flow to the next switch’s

input along the flow’s path.

λini,p+1 = λouti,p , S
in
i,p+1 = Souti,p

2.7.4 Evaluation

We now turn to an experimental evaluation of our algorithms. The topol-

ogy built for the experiment has 294 hosts, 882 directional links and 11,760

flows. The link bandwidth is 1 Gb/s. The switches used in the network

all use the FCFS schedulers or the FQ schedulers for comparison. We use

a Possion-Pareto-Burst-Process (PPBP) [51] traffic model to generate the

ingress rates for each flow. A Poisson process generates arrivals, each of

which contributes a random traffic volume that is sampled from a Pareto

distribution. The PPBP is recognized as a good model of traffic arrival to
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Table 2.10: Rules of Phase I, Flow Update Computation

Port State Scheduling
Policy

Algorithm

Resolved
FCFS ∀i ∈ Fp, Souti,p = Settled, λouti,p = λini,p ×min(1, Up

Λin,p
)

FQ Initially, sort Fp according to λini,p, Ep = 0,mp = np;

Every input flow processing round,

λouti,p =


λini,p if λini,p ≤ Ri,p

min(λini,p, Ri,p + Ep
mp

) if λini,p > Ri,p

mp = mp − 1, Ep = Ep +Ri,p − λouti,p

Transparent
FCFS ∀i ∈ Fp, λouti,p = λini,p and Souti,p = Sini,pFQ

Unresolved
FCFS λouti,p =


λini,p ×min(1, Up

Λsettledin,p

) if Sini,p = Settled

λini,p ×min(1, Up
Λsettledin,p +1

) if Sini,p = Bounded

Souti,p = Bounded

FQ Initially,

∀j ∈ Fp ∧ Sinj,p = Bounded, λinj,p = 0
ifSini,p = Settled

∀j ∈ Fp ∧ Sinj,p = Bounded ∧ j 6= i, λinj,p = 0
ifSini,p = Bounded

Compute λouti,p using the same algorithm for FQ
resolved port case

Souti,p =


Sini,p if λini,p ≤ Ri,p

Bounded else
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a backbone. We adjust its input parameter to achieve desired average link

utilization. The Hurst parameter for the Pareto distribution is set to 0.8 for

all the experiments.

Our evaluation is focused on execution speed and accuracy, both relative to

a pure packet simulation. The experimental design sets a target average link

utilization and chooses PPBP parameters that produce such loadings. In all

experiments a time-step is 1 second of simulation time, and each experiment

advances simulation time 1000 seconds. Each time-step we measure how

many ports end up in dependency cycles, and how many fixed point iterations

are required to solve the dependencies. For each target link utilization we run

10 experiments. Our performance metrics are based on observations from all

time-steps.

Convergence Behavior

We consider a solution at a time-step to be converged when the maximum rel-

ative difference between successive approximations to any flow rate is 0.001,

for example, when |λn+1 − λn|/λn ≤ 0.001 for all flow rates λn. In addi-

tion, the desired average link utilization is 90% in all the convergence study

experiments.

Figure 2.15 describes the distribution the number of ports on the depen-

dence graph generated in phase II (over all time-steps and all runs), and the

distribution of the number of iterations used to reach fixed-point solutions

in phase III, for the FCFS network and the FQ network respectively. This

data shows that even under high network load (90% link utilization) our al-

gorithm significantly reduces the number of ports involved in the fixed point

iteration, and finds the solution in a small number of iterations.

The data shows that the FQ structure tends to induce fewer ports in de-

pendency cycles (7.6% for the FCFS network and 2.2% for the FQ network),

and (consequently) fewer iterations of the fixed point algorithm for solution.

We understand the difference as being due to the fact that the reserved band-

width for an individual flow in the FQ switch can produce more settled flows.

For FCFS switches under congestion all the output flows change if one input

flow changes rate, whereas for FQ switches, an input flow within its reserved

bandwidth will not change its output rate.
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Figure 2.15: Convergence Experiment Results, 90% Link Utilization
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Simulation Speed

The algorithm must execute quickly if it is to be useful for large scale network

simulation. The authors in [43] examine the speedup of the algorithm for

FCFS networks relative pure packet simulation for background flows and

observe speedups exceeding 3000 when executing on an ordinary PC. We infer

that similar speedups will be achieved using our algorithm on FQ networks by

comparing execution speed with FQ switches with execution speed on FCFS

switches, under exactly the same topology and exactly the same traffic loads

(varied from 10% to 90%).

These experiments use the same topology as was used in the convergence

experiments, and likewise the time-step is 1 simulation second. As before, for

each load setting we executed 10 independent runs, each of 1000 simulation

seconds. The average execution time per time-step of both switches as well

as the corresponding standard derivations are presented in the upper portion

of Figure 2.16 and the average time spent on each phase is also listed under

link utilization 10% and 90% for comparison.

Each time-step advances the simulation clock by 1 second, while the total

time required under both traffic loads, and both scheduling policies is less

than 2 ms. Clearly on this sized model the background traffic calculation in

no way threatens the ability to run the simulation faster than real time.

The lower portion of Figure 2.16 describes the difference in execution

time between the topology with FCFS switches, and the topology with FQ

switches. For each phase we measure the time required each run. We drive

the FCFS model and the FQ model with exactly the same samples of traffic

demand using synchronized random number streams, so each data point in

the estimate is of coupled sampled paths. Here we see the higher overhead in

FQ of phase I due to sorting input flows by rate, and related management.

However, for all but the lightest load, the extra computational cost is more

than accounted for by accelerated performance in phases 3 and 4, due to

fewer unresolved ports, and flow values settling faster because of bandwidth

reservations. Under very light load there are very few congested ports and

so the additional overhead in FQ switches in phase 1 is not recovered from

by improved performance later.
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Accuracy

We also consider the accuracy of our approach when used as a background

traffic generator, as compared to the pure packet-oriented approach. The

idea is to study the properties of a small number of detailed packet-oriented

UDP flows, while the background traffic is either packet based or flow based.

Toward this end, we modify the topology used in the convergence simula-

tion experiments by attaching a UDP server to each ingress node and a

UDP client to each egress node. The background traffic is simulated with

two different techniques: our time-stepped coarse-grained simulation and

conventional packet-level simulation. We parametrically control the traffic

parameters to cause the average background traffic load on a link to vary

between experiments, from 10% to 90%. The PPBP traffic model is used to

generate ingress traffic for each flow.

For every background traffic load, we simulate 10 experiments. In each

experiment, a UDP client randomly picks a UDP server on any other end

host. A UDP server’s behavior can be modeled as an ON/OFF process: it

uses UDP protocol to send a file of 70 Mbytes at the constant rate of 700

Mb/s, and after it finishes the transfer, it remains idle for an exponentially

distributed period with a mean of 1 seconds; after the off period finishes, it

sends another 70 Mbytes at the same rate, and the above process repeats

until the simulation is over. Every experiment is simulated for 1000 seconds

(in simulation time).

We compare the behavior of the UDP flows using different methods for

background traffic generation on both the FCFS network and FQ network

respectively. The experiments are coupled, in the sense that the same pat-

tern of requests is simulated for the UDP flows in the two experiments that

use different background flow generation, and furthermore, the background

flow generation in the two experiments is driven by the same offered load.

In this way, we ensure that on an experiment-by-experiment basis, we are

comparing precisely the same context for measuring foreground UDP flows

against different background generation techniques.

Figure 2.17(a) and 2.17(b) plot the sample mean and 95% confidence in-

tervals of the delivered fraction of UDP traffic measured in 10 experiments.

We see that the fraction of the delivered UDP traffic decreases with the link

utilization in both cases due to congestion. The most important feature of
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the plots is that the mean of the delivered foreground traffic is close between

two background flow generation techniques for both FCFS and FQ networks.

The FQ network performs better than the FCFS network when the back-

ground traffic load is greater than 50%. The explanation here is that we

have to approximate packet loss at a congested switches. The more heav-

ily congested the network, the more heavily the approximation is exercised.

That approximation is the cause of the error in the FCFS network; in the

FQ network, when all the input flows, including the foreground flows, to a

output port is higher than its reserved bandwidth, every flow simply gets

its own reserved bandwidth, and therefore the packet loss approximation is

quite accurate under high traffic load.
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Figure 2.17: Delivered Fraction of Foreground UDP Traffic

2.8 Parallel Simulation of Software-Defined Networks

Existing network architectures fall short when handling networking trends,

e.g., mobility, server virtualization, and cloud computing, as well as market

requirements with rapid changes. Software-defined networking (SDN) is de-

signed to transform network architectures by decoupling the control plane

from the data plane. Intelligence is shifted to the logically centralized con-

troller with direct programmability, and the underlying infrastructures are
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abstracted from applications. The wide adoption of SDN in network in-

dustries has motivated development of large-scale, high-fidelity testbeds for

evaluation of systems that incorporate SDN. We leverage our prior work on

a hybrid network testbed with a parallel network simulator and a virtual-

machine-based emulation system. In this work, we extend the testbed to

support OpenFlow-based SDN simulation and emulation; show how to ex-

ploit typical SDN controller behavior to deal with potential performance

issues caused by the centralized controller in parallel discrete-event simula-

tion; and investigate methods for improving the model scalability, including

an asynchronous synchronization algorithm for passive controllers and a two-

level architecture for active controllers. The techniques not only improve the

simulation performance, but also are valuable for designing scalable SDN

controllers.

2.8.1 Overview

Complex networks with large numbers of vendor-dependent devices and in-

consistent policies greatly limit network designers’ options and ability to

innovate. For example, to deploy a network-wide policy in a cloud platform,

the network operators must (re)configure thousands of physical and virtual

machines, including access control lists, VLANs, and other protocol-based

mechanisms. Trends in networking, such as cloud services, mobile comput-

ing, and server virtualization, also impose requirements that are extremely

difficult to meet in traditional network architectures. Software-defined net-

working (SDN) is designed to transform network architectures. In an SDN,

the control plane is decoupled from the data plane in the network devices,

such as switches, routers, access points, and gateways, and the underlying in-

frastructure is abstracted from the applications that use it. Therefore, SDN

enables centralized control of a network with flexibility and direct programa-

bility. SDNs have been widely accepted and deployed in enterprise networks,

campus networks, carriers, and data centers. For example, Google has de-

ployed SDN in its largest production network: its data-center to data-center

WAN [52].

OpenFlow [53] is the first standard communications interface defined be-

tween the control and forwarding layers of an SDN architecture. Existing
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OpenFlow-based SDN testbeds include MiniNet [54], MiniNet-HiFi [55], OF-

Test [56], OFlops [57], and NS-3 [58]. MiniNet probably is the most widely

used SDN emulation testbed at present. It uses an OS-level virtualization

technique called Linux container, and is able to emulate scenarios with 1000+

hosts and Open vSwitches [59]. However, MiniNet has not yet achieved per-

formance fidelity, especially with limited resources, since resources are time-

multiplexed by the kernel, and the overall bandwidth is limited by CPU and

memory constraints. Execution of real programs in virtual machines exhibits

high functional fidelity, and creation of multiple virtual machines on a single

physical machine provides scalability and flexibility for running networking

experiments, but low temporal fidelity is a major issue for virtual-machine-

based network emulation systems. By default, all virtual machines use the

same system clock of the physical machine. As a result, when a virtual ma-

chine is idle, its clock still advances. That raises the temporal fidelity issue

when applications running on a virtual machine are expected to behave as

if they were being executed on a real machine. All existing SDN emulation

testbeds lack temporal fidelity. We have developed an emulation virtual time

system in our prior work [2]. Freeing the emulation from real time enables us

to run experiments slower or faster than real time. When resources are lim-

ited, we can always slow down experiments to ensure accuracy. On the other

hand, experiments can be accelerated if system resources are sufficient. In

this work, we extend the system to support OpenFlow-based SDN emulation

with high functional fidelity and temporal fidelity.

While emulation testbeds offer fidelity, they are not suitable for large-scale

network experiments. Simulation testbeds can provide scalability, but the

accuracy degrades because of models’ simplification and abstraction. There-

fore, in prior work, we integrated a parallel network simulator with a virtual-

machined-based emulation system based on virtual time [3]. When conduct-

ing network experiments, we can execute critical components in emulation

and use simulation to provide a large-scale networking environment with

background traffic. In this work, we also develop a framework to support

OpenFlow-based SDN simulation, including models of an OpenFlow switch,

controller, and protocol. The ns-3 network simulator also has an Open-

Flow module [58] supporting both simulation and emulation, but, unlike our

system, it does integrate virtual-time-based emulation and parallelized simu-

lation. In addition, we have conducted extensive studies of application-level
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behaviors in our emulation system [60], and discovered that the errors intro-

duced by the emulation system are bounded by one timeslice, which is the

system execution unit (e.g., 100 µs). However, the processing delay within a

gigabit switch is on the scale of one microsecond. If such a delay is critical

to the SDN applications being tested, we can use simulation models instead,

in which the time granularity is defined by the users to achieve the desired

timing accuracy.

In this work, we extend our network testbed with the capability to emulate

and simulate OpenFlow-based SDNs. The extension is based on close analysis

of how SDN controllers typically behave, which led to organizational and

synchronization optimizations that deal with problems that might otherwise

greatly limit scalability and performance. The testbed provides the following

benefits and is a useful tool for SDN-based research in general:

• Temporal fidelity through a virtual time system, especially with limited

system and networking resources, e.g., it can emulate 10 hosts, each

with a gigabyte Ethernet interface, on a single physical machine with

only one one-gigabyte Ethernet network card

• More scalable network scenarios with simulated nodes

• Background traffic at different levels of detail among the simulated

nodes

• Sophisticated underlying network environments (e.g., wireless commu-

nication CSMA/CA)

An OpenFlow controller typically connects with a large number of Open-

Flow switches. Not only is the centralized controller a potential communi-

cation bottleneck in the real networks, but also it gives rise to performance

drawbacks in simulating such networks in the context of parallel discrete-

event simulation. The large number of switch-controller links could poten-

tially reduce the length of the synchronization window in barrier-based global

synchronization, and could also negatively impact the channel scanning type

of local synchronization. We investigate techniques to improve the scalabil-

ity of the simulated OpenFlow controllers through analysis of a list of ba-

sic controller applications in POX, which is a popular OpenFlow controller

written in Python [61]. We classify the controller applications into active
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controllers and passive controllers based on whether the controllers proac-

tively insert rules into the switches, or the rule insertions are triggered by

the switches. We design an asynchronous synchronization algorithm for the

passive controllers, and a two-level architecture for the active controllers for

use in building scalable OpenFlow controller models.

The main contributions of this work are as follows: (1) We develop a

network testbed for simulating and emulating OpenFlow-based SDNs. The

testbed integrates a virtual-time embedded emulation system and a parallel

network simulator to achieve both fidelity and scalability. (2) We explore

and evaluate means to improve the performance of simulation of OpenFlow

controllers in parallel discrete-event simulation, including an asynchronous

synchronization algorithm for controllers that are “passive” (according to a

definition given in Section 2.8.4), and a two-level architecture for controllers

we classify as “active.” (3) The two-level controller architecture is also a

valuable reference for designing real scalable SDN controllers.

2.8.2 OpenFlow-Based Software-Defined Networks

In a traditional network architecture, the control plane and the data plane

cooperate within a device via internal protocols. By contrast, in an SDN,

the control plane is separated from the data plane, and the control logic is

moved to an external controller. The controller monitors and manages all of

the states in the network from a central vantage point. The controller talks

to the data plane using the OpenFlow protocol [62], which defines the com-

munication between the controller and the data planes of all the forwarding

elements. The controller can set rules about the data-forwarding behaviors

of each forwarding device through the OpenFlow protocol, including rules

such as drop, forward, modify, or enqueue.

Each OpenFlow switch has a chain of flow tables, and each table stores a

collection of flow entries. A flow is defined as the set of packets that match

the given properties, e.g., a particular pair of source and destination MAC

addresses. A flow entry defines the forwarding/routing rules. It consists of a

bit pattern that indicates the flow properties, a list of actions, and a set of

counters. Each flow entry states “execute this set of actions on all packets

in this flow,” e.g., forward this packet out of port A. Figure 2.18 shows the
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Figure 2.18: How an OpenFlow Switch Handles Incoming Packets

main components of an OpenFlow-based SDN and the procedures by which

an OpenFlow switch handles an incoming packet. When a packet arrives

at a switch, the switch searches for matched flow entries in the flow tables

and executes the corresponding lists of actions. If no match is found for the

packet, the packet is queued, and an inquiry event is sent to the OpenFlow

controller. The controller responds with a new flow entry for handling that

queued packet. Subsequent packets in the same flow will be handled by

the switch without contacting the controller, and will be forwarded at the

switch’s full line rate.

Some benefits of applying SDN in large-scale and complex networks include

the following:

• The need to configure network devices individually is eliminated.

• Policies are enforced consistently across the network infrastructures, in-

cluding policies for access control, traffic engineering, quality of service,

and security.

• Functionality of the network can be defined and modified after the

network has been deployed.

• The addition of new features does not require change of the software

on every switch, whose APIs are generally not publicly available.
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Figure 2.19: S3F System Architecture Design with OpenFlow Extension

2.8.3 OpenFlow Integration

The design of SDN separates the control plane from the data plane in network

forwarding devices (switches, routers, gateways, or access points). Users can

design their own logically centralized controllers to define the behaviors of

those forwarding elements via a standardized API, such as OpenFlow, which

provides flexibility to define and modify the functionalities of a network af-

ter the network has been physically deployed. Many large-scale networks,

such as data centers, carriers, and campus networks, have been deployed

with SDNs. Network simulation/emulation is often used to facilitate the

testing and evaluation of large-scale network designs and applications run-

ning on them. Therefore, we extend our existing network testbed to support

OpenFlow, in particular, simulation and/or emulation of network experi-

ments that contains OpenFlow switches and controllers, which communicate
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via the OpenFlow protocol. The testbed architecture design is depicted in

Figure 2.19.

To emulate OpenFlow-based networks, we can run unmodified OpenFlow

switch and controller programs in the OpenVZ containers, and the network

environment (such as wireless or wireline media) is simulated by S3FNet.

Since the executables are run on the real network stacks within the contain-

ers, the prototype behaviors are close to the behaviors in real SDNs. Once

an idea works on the testbed, it can be easily deployed to production net-

works. Other OpenFlow emulation testbeds, like MiniNet [54], have good

functional fidelity too, but lack performance fidelity, especially with heavy

loads. Imagine that one OpenFlow switch with ten fully loaded gigabit links

is emulated on a commodity physical machine with only one physical giga-

bit network card. There is no guarantee that a switch ready to forward a

packet will be scheduled promptly by the Linux scheduler in real time. Our

system does not have such limitations, since the emulation system is virtual-

time embedded. The experiments can run faster or slower depending on the

workload. When load is high, performance fidelity is ensured by running the

experiment slower than real time. On the other hand, when the load is low,

we can reduce the execution time by quickly advancing the experiment.

However, experimental results show that errors introduced by the virtual

time system at the application level are bounded by the size of one emulation

timeslice. We may reduce the error bound by setting a smaller hardware

interrupt interval [2]. Nevertheless, the interval cannot be arbitrarily small

because of efficiency concerns and hardware limits. We typically use 100

µs as the smallest timeslice. If we want to simulate a gigabit switch whose

processing delay is on the scale of a micro-second, a 100 µs error bound

is simply too large. That motivated us to develop a simulated OpenFlow

switch and an OpenFlow controller model; the simulation virtual time unit

is defined by the users and can be arbitrarily small, typically a micro-second

or nano-second.

Our OpenFlow simulation model has two components: the OpenFlow

switch, and the OpenFlow controller. The switches and the controller com-

municate via the OpenFlow protocol [62], and the protocol library we use is

the OpenFlow reference implementation at Stanford University [63], which

has been used in many hardware-based and software-based SDN applications.

The initial version of the switch and the controller models have been devel-
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oped with reference to the ns-3 OpenFlow models [58]. Figure 2.20 depicts

the model implementation details.

Our OpenFlow switch model can handle both simulated traffic and real

traffic generated by the applications running in the containers. The switch

model has multiple ports, and each port consists of a physical layer and

a data link layer. Different physical and data link layer models allow us to

simulate different types of network, such as wireless and wireline networks. A

switch layer containing a chain of flow tables is located on top of the ports, as

shown in Figure 2.20. It is responsible for matching flow entries in the tables

and performing the corresponding predefined actions or sending an inquiry

to the controller when no match is found in the tables. The controller model

consists of a group of applications (e.g., learning switch, link discovery) as

well as a list of connected OpenFlow switches. It is responsible for generating

and modifying flow entries and sending them back to the switches.

Needless to say, running executables of OpenFlow components in the em-

ulation mode has better functional fidelity than the simulation models do.

We attempt to keep the high fidelity in the simulation models by using the

original unmodified OpenFlow library, which has been used to design many

real SDN applications. Also, the simulation models are not constrained by

the 100 µs timeslice error bound in emulation. In addition, we can run ex-

periments in the simulation mode with much larger network sizes. Finally,

as a bonus effect of the OpenFlow design, we no longer have to preload a

forwarding table at every network device, since where and how to forward

the packets are decided on demand by the controller. Simulating a network

with millions or even more network devices at the packet level is affordable

in our system.

Figure 2.20 also shows the journey of a packet in our system. A packet

is generated at the source end-host, either from the simulated application

layer or from the real network application in a container. The packet is

pushed down through the simulated network stacks of the host and then is

popped up to the OpenFlow switch via the connected in-port. Depending

on the emulation or simulation mode of the switch (the OpenVZEmu mod-

ule in Figure 2.20 is used to handle the case where the entity is associated

with a virtual-machine container), the packet is searched within the simu-

lated flow tables or the real flow tables in the container, and a set of actions

are executed when matches are found. Otherwise, a new flow event is di-
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Figure 2.20: OpenFlow Implementation in S3F

rected to the controller, meaning either the simulated controller model or

the real controller program in the container. The controller generates new

flow entries and installs the flow entries onto the switches via the OpenFlow

protocol. Afterward, the switch knows how to process the incoming packet

(and subsequent additional packets of this type), and transmit it via the cor-

rect out-port. Eventually the packet is received by the application running

on the destination end-host.

2.8.4 Scalability of Simulated OpenFlow Controllers

SDN-based network designs have multiple OpenFlow switches communi-

cating with a single OpenFlow controller. However, many-to-one network

topologies not only create communication bottlenecks at the controllers in

real networks, but also negatively impact the performance of conservative

synchronization of parallel discrete-event simulations. The conservative syn-

chronization approaches in parallel discrete-event simulation generally fall

into two categories: synchronous approaches based on barriers [64], [65], [66],

and asynchronous approaches, in which a submodel’s advance is a function

of the advances of other submodels that might affect it [67]. The single-

controller-to-many-switch architecture can be bad for both types of synchro-
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Table 2.11: Classification of the Basic Network Applications in the POX
OpenFlow Controller

Controller
Applica-
tion

Description Passive/
Active

State Other
Comments

openflow.
keep alive

The application sends peri-
odic echo requests to connected
switches. Some switches will
assume that an idle connection
indicates a loss of connectivity
to the controller and will dis-
connect after some period of si-
lence, and this application is
used to prevent that.

Active Distributed The request-
sending
period is a
good source
of lookahead.

forwarding.
l2 learning

The application makes an
OpenFlow switch act as a
type of L2 learning switch.
While the component learns L2
addresses, the flows it installs
are exact matches on as many
fields as possible. For example,
different TCP connections will
result in installation of different
flows.

Passive Distributed

forwarding.
l2 pairs

The application also makes an
OpenFlow switch act like a type
of L2 learning switch. However,
it installs rules based purely on
MAC addresses, probably the
simplest way to do a learning
switch correctly.

Passive Distributed

forwarding.
l2 learning

The application is not quite a
router. It uses L3 information
to perform data switching sim-
ilar to an L2 switch.

Passive Distributed

openflow.
link discovery

The application sends specially
crafted messages out of Open-
Flow switches to discover link
status, e.g., to discover the net-
work topology. Switches raise
events to the controller when
links go up or down.

Active Shared
among the
connected
switches

The link
status query
period is a
good source
of lookahead.

forwarding.
l2 multi

This application can still be
seen as a learning switch, but
it learns where a MAC address
is by looking up the topology of
the entire network.

Passive Network-
wide

openflow.
span-
ning tree

This application constructs a
spanning tree based on the net-
work topology, and then dis-
ables flooding on switch ports
that are not on the tree.

Active Network-
wide
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nization.

We can view a network model as a direct graph: nodes are entities like

hosts, switches, and routers; edges are the communication links among en-

tities; and each link is weighted by a link delay. From S3F, the parallel

simulation engine’s viewpoint, the graph is further aggregated: a node repre-

sents a group of entities on the same timeline, and the simulation activity of

all entities on a timeline is serialized; multiple links between timelines ti and

tj are simplified into one link whose weight is the minimum (cross-timeline)

delay between ti and tj.

A barrier-based synchronous approach is sensitive to the minimum incom-

ing edge weight in the entire graph. If one of the OpenFlow switch-controller

links has a very small link delay (e.g., a controller and a switch could be

installed on the same physical machine in reality), even if there are few ac-

tivities running on the link, the overall performance will be poor because

of the small synchronization window. On the other hand, an asynchronous

approach focuses on timeline interactions indicated by the topology, but is

subject to significant overhead costs on timelines that are highly connected.

The SDN-based architectures unfortunately always have a centralized con-

troller with a large degree, which is not a desired property for asynchronous

approaches either.

To improve the simulation performance with SDN architectures, we explore

the properties of an OpenFlow controller with reference to a list of basic

applications in POX, which is a widely used SDN controller written in Python

[61]. The applications are summarized in Table 2.11. We have two key

observations.

First, controllers can be classified as either passive or active. A con-

troller is passive if the applications running on it never initiate communica-

tion to switches, but only passively respond to inquires from switches when

no matches are found in switches’ flow tables. The forwarding.l2 learning

application is a good example of an application that runs on a passive

controller. An active controller initiates communication to switches, e.g.,

detecting whether a switch or a link is working or broken. The open-

flow.link discovery application is an example of an application that runs on

an active controller.

Second, a controller is not simply a large single entity shared by all the con-

nected switches. A controller actually has states that are shared by switches
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at different levels. Suppose there are N switches in a network, and m switches

(1 ≤ m ≤ N) share a state.

• When m = N , the state is network-wide, i.e., the state is shared by

all switches. For example, the openflow.spanning tree application has

a network-wide state, which is the global network topology.

• When m = 1, the state is distributed, i.e., no other switch shares

the state with this switch. For example, the forwarding.l2 learning

application has a distributed state, which is the individual learning

table for each switch.

• When 1 < m < N , the state is shared by a subset of switches of size m.

For example, the openflow.link discovery application has such a state,

which is the link status shared among all the switches connected to

that link.

Based on the aforementioned two observations, we revisit the controller de-

sign and investigate techniques to improve the performance of the simulation

of OpenFlow-based SDNs with parallel discrete-event simulation. In particu-

lar, we design an efficient asynchronous algorithm for passive controllers; we

also propose a two-level controller architecture for active controllers, and an-

alyze performance improvement for three applications with different types of

states. The proposed architecture is not only helpful with respect to simula-

tion performance, but also a useful reference for designing scalable OpenFlow

controller applications.

Passive Controller Design

A passive controller indicates that applications running on the controller do

not proactively talk to switches, a feature we can use in designing a controller

whose functionality is known to be passive. A new design is also motivated by

another observation: when a switch receives an incoming packet, the switch

can handle the packet without consulting the controller if a matched rule

is found in the switch’s flow table; and, for some applications, the number

of times the controller must be consulted (e.g., first time the flow is seen,

or when the flow expires) is far lower than the number of packets being
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processed locally. All the learning switch applications in the POX controller

have this property.

Therefore, our idea is that for a passive controller, switches are free to

advance their model states without constraint, until the switches have to

communicate with the controller. If multiple switches share a state, then the

controller needs to refrain from answering the inquiring switch until all its

cross-timeline dependent switches have advanced to the time of the inquiring

switch. The algorithm is presented as follows:

Let A be the set of applications running in the OpenFlow controller, and

R be the set of OpenFlow switches in a network model. We define TL(r) to

be the timeline to which switch r is aligned. For each a ∈ A and r ∈ R, we

define f(r, a) to be the subset of OpenFlow switches that share at least one

state with switch r for application a. For example, f(r1, a1) = {r2, r3} means

that switches r1, r2, r3 are dependent on (sharing states with) application

a1. Causality is ensured only if the controller responds to the inquiry from

switch r1 with timestamp t1, after all the dependent cross-timeline switches

ri, i.e., ri ∈ f(r1, a) and TL(ri) 6= TL(r1), have advanced their times to at

least t1. For an application with network-wide states, f(r, a) = R− {r}; for

a fully distributed application, f(r, a) = φ.

Algorithm 3 is designed for efficient synchronization among switches and

fast simulation advancement with correct causality in the case of a passive

controller. The algorithm is divided into two parts: one at the controller

side and another at the switch side. Since the controller cannot actively

affect a switch’s state, it is safe for a switch to advance independent of the

controller until a switch-controller event happens (e.g., a packet is received

that has no match in the switch’s flow tables). The delays between the

controller and the switches thus do not affect the global synchronization.

The causality check is performed at the controller, since it has the global

dependency information of all the connected switches. Upon receiving an

OpenFlow inquiry, the controller is responsible for making sure no response

will be sent back to the switch (thus, the switch will not advance its clock

further) until all its dependent switches have caught up with it in simulation

time. In addition, this design does not require that the controller be modeled

as an S3F entity, which means that the controller does not have to align

with any timeline. All the interactions can be done through function calls

instead of via message passing through S3F channels. This design works only
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for a passive controller and can greatly reduce the communication overhead

between the controller and switches. As a result, a passive controller is not a

bottleneck in conservatively synchronized parallel simulation, as low latency

to switches and high fan-out might otherwise cause it to be.

Figure 2.21 illustrates our synchronization algorithm with an example.

The steps are as follows:

1. Switch r1 sends an inquiry to the controller with t1(now).

2. The controller gets the current times of all dependent cross-timeline

switches, e.g., t2(now), t3(now).

3. Because t2(now) < t1(now), the controller schedules a timing report

event at t1(now) on timeline 2; no event is scheduled on timeline 3

since t3(now) > t1(now).

4. At t1(now) on Timeline 2, r2 signals the controller.

5. The controller generates rule(s) based on the up-to-date states and

sends a response back to r1.

The algorithm works for all passive controllers, whether the application

states are distributed (e.g., forwarding.l2 learning) or network-wide (e.g., for-

warding.l2 multi). The state property plays an important role in the active

controller design, which will be discussed in Section 2.8.4. However, the per-

formance of passive controllers does benefit from use of distributed states as

well as the smaller number of cross-timeline dependent switches.

Active Controller Design

Active OpenFlow controllers proactively send events to the connected Open-

Flow switches, and those events can potentially affect the states of switches.

Therefore, the switches do not have the freedom to advance the model states

like those switches that connect to passive controllers, but are subject to the

minimum link latency between the controller and the switches. However, the

question we have is: are the assumptions about connectivity in SDNs overly

pessimistic? For example, can any timeline generate an event at any instant

that might affect every other timeline?
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Algorithm 3 Synchronization Algorithm with Passive Controller

Controller Side
/* Upon receiving an OpenFlow inquiry from switch ri with timestamp ti
*/
for each application aj related to the inquiry do

for each switch rk ∈ f(ri, aj) AND TL(rk) 6= TL(ri) do
get the current simulation time, tk, of rk
if tk < ti then

schedule a timing report event at time ti on the timeline of rk
increase dcts[i] by 1
/* dcts[i] is the counter of unresolved dependent cross-timeline
switches for switch ri */

end if
end for

end for

pthread mutex lock()
while dcts[i] > 0 do

pthread cond wait()
end while
pthread mutex unlock()

process the inquiry (i.e., generate rules to handle packets)
send an OpenFlow response to switch ri

Switch Side
/* Upon receiving a packet at an ingress port */
check flow tables
if found matched rule(s) then

process the packet accordingly
else

send an OpenFlow inquiry to the controller
end if

/* On reception of an OpenFLOW response */
store the rule(s) in the local flow table(s)
process the packet accordingly

/* Scheduled timing report event for switch ri fires */
pthread mutex lock()
decrease dcts[i] by 1
if dcts[i] = 0 then

pthread cond signal()
end if
pthread mutex unlock()
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Figure 2.21: Sample Communication Patterns between the OpenFlow
Switch and the Passive OpenFlow Controller Using Our Synchronization
Algorithm

We make the following observations about the active controller applica-

tions. First, not all controllers have only network-wide states. Some have

fully distributed states, e.g., a switch’s on/off state (openflow.keep alive ap-

plication); some have states that are shared among a number of switches,

e.g., a link’s on/off state is shared among switches connected to the same

link (openflow.link discovery application). Second, not all events will result

in global state changes, and quite often a large number of events are handled

locally, and only influence switches’ local states. For instance, only when a

communication link fails, or when a link is recovered from failure or when

some new switches join or leave the network, a link status change event

is generated for the openflow.link discovery application, so that it updates

its global view; during the remaining (most of the) time, the network-wide
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state, i.e., the global topology, remains unchanged. Therefore, for such appli-

cations, instead of having a centralized controller frequently send messages

to all the connected switches and wait for responses, we can first determine

which events affect network-wide states and which do not, and then off-load

those events, which only cause local state changes, towards the switch side.

Thus, we relieve the pressure at the controller.

Based on our observations of active controller applications, we propose

a two-level active controller architecture as depicted in Figure 2.22. Local

states are separated from network-wide states in a controller, and the con-

troller is divided into a top-controller and a number of local controllers. The

top controller communicates only with the local controllers, not with the

switches, to handle events that potentially affect the network-wide states.

The local controllers run applications that can function using the local states

in switches, e.g., the local policy enforcer, or link discovery. There are no

links among local controllers. With the two-level controller design, we aim

to improve the overall scalability, especially at the top controller, as follows:

• The top controller has a smaller degree, which is good for local syn-

chronization approaches.

• Fewer messages are expected to occur among local controllers and the

top controller for many applications, since the heavy communication is

kept between the switches and local controllers. That is good for local

synchronization approaches as well.

• If we align the switches that share the same local controller to the same

timeline, the local controllers actually do not have to be modeled as

an entity. Message passing through channels is not needed, as function

calls are sufficient.

Conversion of a controller into a two-level architecture requires that mod-

elers carefully analyze the states in the controller applications. That process

is not only useful in creating a scalable simulation model, but also help-

ful in designing a high-performance real SDN controller, because it offloads

local-events processing to local resources. In the remainder of this section,

we will inspect three active controller applications with our two-level con-

troller design: (1) openflow.keep alive with fully distributed states, (2) open-
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Figure 2.22: Two-Level Controller Architecture

flow.link discovery with shared states, and (3) openflow.spanning tree with

network-wide states.

The openflow.keep alive application is designed to send periodic echo

requests to all connected switches to prevent loss of connections, since some

switch firmware by default treats an idle link as a link failure. Meanwhile,

the controller also maintains a complete list of the running switches in the

network. Since the on/off state of a switch is independent of other switches,

the openflow.keep alive is an example of applications with fully distributed

states. In the two-level controller design, one local controller is created for

each switch. Let us now compute the total number of simulation events

(e.g., message-sending events, message-receiving events, and time-out events)

within one echo request period with the single controller and the two-level

controller.

Assume that the network has n switches, and let p be the probability that

a switch fails during one request period. In the single-controller case, the

controller needs one timer event to enable the echo request sending process,

and then sends one request to each switch. If a switch is working, the request

is received at it, and it replies with a response; finally, the controller receives

the response. If a switch fails, a timeout event occurs at the controller.

Therefore, for the single-controller case, the total number of events within

one period is M1 = 1 + n+ (1− p) ∗ n ∗ (1 + 1 + 1) + p ∗ n = 1 + 4n− 2pn.

In the two-level controller case, we have n local controllers, and each local

controller fires one timer event to start the request-sending process. Since

the communication with the local controllers and the switches is modeled

by function calls instead of by message passing, no event occurs as long as
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a switch is working. If a switch fails, the local controller reports the state

change to the global controller, and the global controller receives the report.

Therefore, for the two-level controller case, the total number of events within

one period is M2 = n+ p ∗ n ∗ (1 + 1) = n+ 2pn.

Assume n � 1; when the fail rate of a switch, p, is 0.75, the single-

controller and the two-level controller have approximately the same total

number of events. If p < 0.75, the two-level controller has fewer events to

simulate. If p is close to 0, which means that switches rarely fail during

experiments, M2 ≈ n events, and M1 ≈ 4n events. Also, let us count the

total number of events processed at the top controller within one period.

The single controller has the total number of events C1 = 1 + n + n ∗ (1 −
p) + n ∗ p = 1 + 2n, and the two-level controller has the total number of

events C2 = np. The latter is always smaller than the former, and thus the

two-level controller for the openflow.keep alive application results in a more

scalable controller. Actually, it is possible to remove the top controller as

long as all the applications running in the controller are fully distributed,

like openflow.keep alive. If so, we can prevent a single global controller from

becoming a potential system bottleneck.

The openflow.link discovery application periodically requests messages

from switches in order to discover the link status, and switches raise events to

the controller when links go up or down. Potentially, this application could

be used to discover the network topology. The states of this application are

the links’ on/off states shared among all the switches connecting to the link.

With the two-level controller design, we assign one local controller to each

switch, and let the top controller manage the shared states.

Let us calculate the total number of simulation events within one link

discovery period for both cases; the switch-switch and switch-host interac-

tions are not counted, since they are the same for both cases. Assume that

the network has n switches, and that the probability that a switch has at

least one link state change is q. For the single-controller case, the controller

fires one timer event to start the link discovery process, and then sends

each switch a link discovery request. Upon receipt of the request at every

switch, the switch sends back a response if at least one of its links has a

state change. Finally, the response is received at the controller to update

the global topology. Therefore, the total number of events within one pe-

riod is M1 = 1 + n + n + q ∗ (n + n) = 1 + 2n + 2qn. For the two-level
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controller case, n local controllers fire one timer event each to start the link

discovery process locally. Since the interaction between the local controller

and the switch is modeled by function calls instead of by message passing,

no event is generated if no link state change is detected. If a link change is

discovered by the switch, the local controller then reports the change to the

global controller, and the global controller receives the report. Therefore,

the total number of events within one period for the two-level controller is

M2 = n+ q ∗ n(1 + 1) = n+ 2qn. We can see that there are 2n fewer events

than in the single-controller scenario. Let us count the number of events

processed at the top controller within one period. The single controller has

1+n+qn events, while the two-level controller has qn events. Therefore, the

two-level controller always has better scalability, especially when the network

has a relatively steady topology. The two-level controller is also a good refer-

ence design for the real link discovery application in the SDN controller. The

number of packets being processed at the top controller is greatly reduced to

achieve good scalability.

Good lookahead can improve performance in simulating networks with

either the single controller or the two-level controller. We notice that the

link discovery request is sent to the switch periodically. The period is often

quite long compared with the time to transmit a packet, and the period

can serve as a good source of lookahead. In addition, another optimization

we could do is to model the top controller as a passive controller since the

requests are now initiated at the local controllers.

The openflow.spanning tree application creates a spanning tree based

on the network topology, and then it disables flooding on switch ports that are

not on the tree. The application has only one state, the global network topol-

ogy. The state is a network-wide state. Therefore, it is hard to convert this

application to a two-level controller. However, the openflow.spanning tree

application still has invariants that we could utilize to improve the system

performance.

S3F synchronizes its timelines at two levels. The inner level uses the

barrier-synchronization and the channel-scanning-synchronization for paral-

lel discrete-event simulation. At the outer level, timelines are left to run

during an epoch, which could terminate either after a specified length of

simulation time, or when the global state meets some specified conditions.

Between epochs S3F allows a modeler to do computations that affect the
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global simulation state, without concern for interference by timelines. A

spanning tree algorithm is often running at the beginning of an experiment

and then is triggered by topology changes or a global timer. In the scenarios

in which a network topology does not change frequently, it is reasonable to

assume that the topology is invariant for a certain minimum length of time,

and we can use that time length as the length of an epoch. Between two

epochs, a spanning tree is recomputed. States (particular spanning trees)

created by those computations are otherwise taken to be constant when the

simulation is running.

We have studied three active applications in the POX controller. Through

careful application state analysis, we can often convert applications with

local states into two-level controller architectures for simulation performance

gain. The analysis not only helps modelers to create scalable SDN network

models, but also helps in the design of scalable real SDN controllers. Many

SDN applications can be far more complicated than the basic applications

in POX. They could be a combination of passive and active applications,

with both distributed and network-wide states, and the states may change

dynamically with time and network conditions. Even so, it is still useful to

divide a complex controller into small building-block applications, classify

them according to the state type as well as passiveness/activeness, and then

apply the corresponding performance optimization techniques.

2.8.5 Evaluation

We first study the performance improvement with the asynchronous synchro-

nization algorithm for the passive controllers. We created a network model

with 16 timelines. The backbone of the network model consisted of 32 Open-

Flow switches, and each switch connected 10 hosts. Half of the hosts ran

client applications, and the other half ran server applications. File trans-

fers between clients and servers were on UDP. The minimum communication

link delay among switches and hosts was set to be 1 ms. During the exper-

iments, each client randomly chose a server from across the entire network,

and started to download a 10 KB file. Once the file transfer was complete,

the client picked another server and started the downloading process again.

All the OpenFlow switches connected to an OpenFlow controller, and the

86



controller ran the openflow.learning multi application, which is essentially

a learning switch, but learns where a MAC address is by looking up the

topology of the entire network. In the first case, we modeled the controller

as a normal S3F entity, and it connected to switches through channels. In

the second case, we used the passive controller design described in Section

2.8.4. Since all switches shared the global network topology, they were de-

pendent on one another. We ran the experiments on a machine with 16

2GHz-processors and 64 GB memory.

In the first set of experiments, we varied the link delay between the switches

and the controller with values of 1 µs, 10 µs, 100 µs and 1 ms. Each exper-

iment was executed for 100 seconds in simulation time for both cases. We

observed 12,810 completed file transfers for both cases. Figure 2.23 shows the

event-processing rates for both cases. In the first case, the traditional barrier-

type global synchronization was used. Since the minimal controller-switch

link delay was set to be no larger than other link delays within the network,

that delay dominated the synchronization window calculation with the global

synchronization algorithm in S3F. Therefore, the performance degraded as

the minimum link latency decreased because of more frequent synchroniza-

tion overheads. In the second case, synchronization was actually two-level:

the global synchronization was used to simulate activities among switches

and hosts, and within a synchronization window, the asynchronous synchro-

nization algorithm was used to simulate interactions between the switches

and the passive controller. Therefore, the controller-switch delay did not af-

fect the global synchronization window size. For the passive controller case,

the event-processing rate remained almost unchanged, and the performance

was two to three times better than in the first case, when the controller-

switch delay was small. The performance was still better in the second case

even when the controller-switch link delay was set to 1 ms (equal to the min-

imal delay of the other links). The reason is that the interactions between

the passive controller and the switches were through function calls instead of

event-passings with S3F channels, which we explored further in the next set

of experiments.

In the second set of experiments, we increased the number of OpenFlow

switches connected to the controller, and the size of the network was thus in-

creased proportionally. Every client application performed the same actions

as in the first experiment set. The model still used 16 timelines, and each
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Figure 2.23: Performance Improvement with the Passive Controller
Asynchronous Synchronization Algorithm: Minimal Controller-Switch Link
Latency

experiment was simulated for 100 seconds with the two types of controller.

Let λ be the event-processing rate of a model using the passive controller al-

gorithm over the event-processing rate of the same model with the S3F entity

controller. The λ indicates the performance improvement of asynchronous

synchronization designed for passive controllers. As shown in Figure 2.24, λ

grows as the number of switches increases. Since each switch needs a larger

flow table as the size of the network increases, switches have more inter-

actions with the controller. As a result, the performance gain of replacing

the message-passing mechanism with function calls for the controller-switch

interactions is more prominent. In addition, the modeled controller applica-

tion has a network-wide state, resulting in a fully dependent switch list in the

passive controller. More performance improvement is expected for modeling

controller applications with distributed states.

We also investigated the performance improvement with the two-level ar-

chitecture for active controllers. The openflow. keep alive application was

developed with the two designs as discussed in Section 2.8.4: (1) a single cen-

tralized controller, and (2) a two-level controller in which the local controllers

are responsible for querying switch states and reporting to the top controller

when switch failures are discovered. The network model had 80 OpenFlow

88



 0.8

 1

 1.2

 1.4

 1.6

 1.8

 16  32  64  128

λ

Number of Switch, Log Scale

λ = 1

Figure 2.24: Performance Improvement with the Passive Controller
Asynchronous Synchronization Algorithm: Number of OpenFlow Switches
in the Network

switches with a minimal link delay of 1 ms, running with 16 timelines. The

switch state inquiry period was set to be 1 second. Let us define the per-

formance indicator ρ to be the event-processing rate of a model using the

two-level controller architecture over the event-processing rate of the same

model using the single controller. We varied the switch failure rate, and the

results are shown in Figure 2.25.

The model with the two-level controller performed better than the model

with the single controller under all switch failure rates. The reasons are that

(1) switches and their local controller were in the same timeline, and the

switch state inquiry activities were well-parallelized; and (2) the switch state

responses were sent back to the top controller only when switch failures were

detected, resulting in less data communication with the top controller. Sim-

ulating a network with smaller switch failure rates had better performance,

e.g., 19 times faster with a zero failure rate, and 5 times faster with a 10%

failure rate, as shown in Figure 2.25.

2.9 Chapter Summary

In this chapter, we present a network testing system that integrates an

OpenVZ-based network emulation system [8] into the S3F simulation frame-
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work [1]. The emulation allows native Linux applications to run inside the

system; and the emulation is based on virtual time, which both provides tem-

poral fidelity and facilitates the integration with the simulation system. We

design and study the global synchronization and VE controlling mechanism

in the system. Through analysis and experiment, we show that the virtual

time error is bounded as a function of timeslice length, which itself is tunable

at the cost of different execution speed [2].

We also test and evaluate the application behaviors of the testbed. The

test cases are designed to cover both network-intensive application and CPU-

intensive applications over a group of commonly-used protocols. We found

the minimal temporal error (100 µs) introduced by the emulation does not

introduce additional behavioral errors in all the tested applications than the

known errors that are bounded by the scale of a timeslice. We also ob-

serve that the errors caused by the native OpenVZ kernel is larger than

the ones caused by the virtual time system, especially for TCP-based ap-

plications. Overall, the application-level validation study suggests that our

emulation/simulation testbed can deliver behaviors with temporal errors no

greater than those induced simply by using OpenVZ virtualization.

In addition, we present a few models developed in the testbed, including

background traffic models and SDN models.

Background traffic models are developed for simulating network traffic flow
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at a coarse scale with the fundamental assumption that the network switches

manage queueing using FCFS scheduling and/or fair queueing scheduling.

The design of the model, such as the way multiple input flows share the

bandwidth of an output port, the independent behavior among output ports

and aggregation of flows having same input-output-port pair, are validated

from the data collected on the real switches using an unique traffic mea-

surement testbed. The background traffic models run extremely fast relative

to packet-based flow simulation and the impact on foreground flow is still

accurate enough for our purposes.

We have extended our network testbed to support OpenFlow-based SDNs

simulation and emulation. Users can conduct SDN-based network experi-

ments with real OpenFlow switch and controller programs in virtual-time-

embedded emulations for high functional and temporal fidelity, or with Open-

Flow switch and controller simulation models for scalability, or with both.

We also explore ways to improve the scalability of the centralized simulated

controllers, including an asynchronous synchronization algorithm for passive

controllers and a two-level architecture design for active controllers, which

also serves as a useful guideline for real SDN controller design.

The current system requires both OpenVZ and S3F to reside on the same

shared memory multiprocessor. One of our ongoing works is to separate

those to support multiple machines running virtual machine managers (i.e.

distributed emulation), not necessarily all running the same virtual system.

We are also interested in means of estimating lookahead from within the

emulation and providing it to the simulation, to accelerate performance. Re-

garding the SDN simulation and emulation models, we plan to evaluate the

network-level and application-level behaviors for different SDN-based appli-

cations under various network scenarios (e.g., long delay, or lossy link). We

would also like to conduct a performance comparison with ground truth data

collected from a real physical SDN testbed as well as data collected from

other testbeds, like MiniNet. In addition, we plan to utilize the testbed to

design and evaluate SDN applications, especially in the context of the smart

grid; an example would be design of efficient quality-of-service mechanisms

in substation routers, where all types of smart grid traffic aggregate.

91



CHAPTER 3

NETWORK SIMULATION-BASED
EVALUATION OF SMART GRID

APPLICATIONS

We have built a large-scale, high-fidelity network testbed by marrying our

S3F parallel simulator [1] with our virtualization-based emulation framework

[2] to enhance the successful transition from in-house research efforts to real

smart grid productions. The testbed uses emulation to represent the execu-

tion of real critical software, and simulation to model an extensive ensemble of

background computation and communication. We have utilized the testbed

to study various smart grid applications. Examples include a DDoS attack

using C12.22 trace service in AMI network (Section 3.1), an event buffer

flooding attack in DNP3-controlled SCADA systems [68] (Section 3.2), and

demand response control algorithms in a hierarchical transactive control net-

work [69] as part of the Pacific Northwest smart grid demonstration project

[70] (Section 3.3).

3.1 AMI Network: A DDoS Attack Using C12.22

Trace Service

3.1.1 Overview of the DDoS Attack Using C12.22 Trace
Service

Advanced metering infrastructure (AMI) systems use metering devices to

gather and analyze energy usage information. The emergence of AMI is an

important step towards building a smart grid that provides both cost effi-

ciency and security. Various communication models, protocols and devices

can be combined to form the communication backbone of an AMI network.

In North America, the major deployment of AMI network is based on Ra-

dio Frequency Mesh network architecture, wireless metering devices and the

ANSI C12 protocol suite.
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In this section, we present a case study that highlights a potential Dis-

tributed Denial of Service (DDoS) attack we discovered in an AMI system

that uses the C12.22 transport protocol, and we find our testbed well sup-

ports this experiment scenario. In this scenario we require detailed functional

behavior of some meters—the ones directly involved in the attack, but only

routing behavior from the others. This suggests an approach where a few

meters are emulated, with the rest of the meters and the communication

network being simulated. The whole experiment can be done on a single

multi-core machine, and this makes the experiment economic and easy to set

up.

ANSI C12.22 protocol is widely used for AMI systems, defining the ap-

plication used to exchange information between AMI devices. It provides a

trace service to return the route between source and destination that a par-

ticular C12.22 message traverses. The main purpose of the trace service is

for network administration and failure detection. However, the design does

not include any security features, and it can be exploited by malicious users

to launch DDoS attacks.

We next explain how DDoS attacks can be launched. When a node wants

to trace the route to a target node, it sends out a message with its own ID and

the target node’s ID enclosed. Whenever an intermediate node on the route

receives the message, it appends its ID to the message and forwards it to the

next hop. Once the destination node receives the request, it replies with a

sequence of all intermediate nodes’ IDs, and thus the route the initiator seeks

to know. Once the trace request reaches the target, the message is returned to

the source—and herein lies an important element of the attack. A malicious

source puts a victim’s ID in as the message source. Thus, a number of

compromised meters, working in concert, can generate many trace requests,

each carrying the spoofed source identity of a victim. The long messages

“reflect” and converge on the victim. Figure 3.1 illustrates this attack.

3.1.2 Attack Experiment Analysis

The AMI network we created for the case study models a typical 4×4 block

neighborhood in a town. There are a total of 448 meters, distributed evenly

(approximately) along the street edges, as shown in Figure 3.2. The meters
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Figure 3.1: C12.12 Trace Service DDoS Attack in AMI Network

responsible for parsing and processing C12.22 packets are emulated by appli-

cations in VEs using real OS protocol stack. This set includes five attacking

meters that generate trace service requests, five meters to which the traces

are directed (each attacker targets its own), and one victim device, whose

source address is spoofed by the attackers. The rest meters and the underly-

ing communication network (802.15.4 ZigBee wireless network) with 1 Mb/s

bandwidth are modeled and simulated by S3F. The radio channel path-loss

model is the simple 1/d2 line-of-sight model. More sophisticated models can

be introduced as needed.

Figure 3.2-A1 and A2 illustrate key meters in the experiment. The egress

point is seen on the lower right edge. All the meters send routine traffic to

that device, around 100-byte packet per 10 seconds. Attacking this choke-

point maximizes the impact of the DDoS attack, and thus we set all the five

attacks choose this point as the victim, and choose one of its close neighbors

as the destination of the trace service request (and hence, reflection point).

The figures mark out the location of the attackers, and the locations of their
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A1. ru - channel utilization (normal) A2. ru - channel utilization (attacking)
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B1. rc - channel contention (normal) B2. rc - channel contention (attacking)
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C1. rl - packet loss (normal) C2. rl - packet loss (attacking)
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Figure 3.2: Experimental Results of DDoS Attacks in AMI Networks Using
C12.22 Trace Service
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trace request destinations. Each attacker sends a trace service packet every

0.05 seconds (200 times faster than a normal meter) and each intermediate

meter will add additional 20 bytes into the payload. Experimenting on the

testbed shows that attackers initializing a few large-size packets rather than

many small-size packets can improve attacking efficiency due to eliminating

frequent back-off times, therefore the trace service packet size is set to 500

bytes. Also learning from the experimental results, arranging the attacker

meters in such a way that each of them covers a long (around 15 to 30

hops in this scenario) and spacial-separated route to the victim’s surrounding

meters could effectively render the entire network useless. More details will

be covered soon in the result analysis.

We investigate and evaluate the impact of the DDoS attack by the following

three metrics from each meter’s viewpoint. The data is collected in a 100

second window and the results are shown in Figure 3.2 for the normal scenario

and the attacking scenario respectively.

ru channel utilization, fraction of time that a meter is transmitting packets

rc channel contention, fraction of time that a meter senses busy channel

rl packet loss, fraction of lost packets

Figure 3.2-A1 illustrates the fraction of time a meter is in a transmitting

state during a 100-second period, where the size of a point reflects its trans-

mitting rate. Compared with A2 (the same experiment, but with attackers)

we see that meters which route attack traffic have much higher transmitting

rates than others. By tracing the highlighted meters, we can easily observe

the routing paths between attackers and the victim. The results also clearly

illustrate the most interesting behavior of trace service – the packet along the

forwarding path takes longer transmitting time and consumes more power of

the relay meter, as one expects because of longer packet length. Another

interesting observation is that when two or more attackers share a common

path (e.g., attacker1 and attacker2 in Figure 3.2-B1), they tend to block out

each other. Therefore, an efficient strategy requires the attackers to smartly

select routes covering the entire network, especially the area around the vic-

tim, with minimum overlaps.

The AMI network uses ZigBee wireless as communication model which

means the attacking traffic does not only affect the meters that forward the
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traffic but also jams the channels of meters around them. Figure 3.2-B2

presents the wireless channel contention in AMI network. The size of the

point codes the utilization of the wireless channel sensed by each meter.

From the figure we can see that, wireless channels are free before the DDoS

attack. Few channel competitions can be found around the place where the

gateway is located. However, when we turn five meters (roughly 1% of all

meters) into attacking nodes, the injected DDoS traffic cause considerable

channel contention in the traversed areas. In Figure 3.2-B2, one of the most

busy zones is at victim’s location. Due to the collision avoidance protocol

used by ZigBee, the meters will back-off until the channel is free. In this case,

it is very difficult for legitimate traffic to pass through the channel busy area.

In addition, when the attacking traffic from different meters meet each other

in the network, they will compete against each other for wireless channel and

their battle field becomes a noticeable busy area in Figure 3.2-B2.

In the third set of experiments, we compared results in Figure 3.2-C1 and

C2, and show the ultimate negative impact that the trace service DDoS

attack has imposed on the entire AMI network by measuring loss rate of

legitimate traffic at each meter. Packets are dropped after four unsuccessful

transmission attempts, or when a buffer (assumed here to hold 100 packets)

overflows. It is not surprising that most of the legitimate meters in AMI

network experience increasingly high packet drop ratio under DDoS attack

since the only egress point has been efficiently blocked by attacking traffic.

This is achieved by compromising fewer than 1% of the meters with properly

selected attacking routes.

The case study shows how our system can be used for exploring security in

a critically important infrastructure. It provides the capability and flexibility

to set up a testing scenario with real emulated hosts modeling complicated

applications and large-scale simulated network environment. The detailed

study of the trace attack and other attacks in smart grid and their corre-

sponding defense mechanisms in our testbed remains future work.

3.1.3 Scalability

How large a model might this system be capable of simulating? To see, we

increase the size of the model by adding the number of neighborhoods (hence
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number of simulated meters and links, and length of communication paths).

There is one egress point in each test case, to which every meter periodically

sends data traffic. Each experiment uses 32 timelines and runs for 1 hour in

virtual time. Table 3.1 summarizes the experimental results. We are able to

simulate a system as large as 64 by 64 neighborhood, with 100,000+ meters,

600,000+ links and 437 billion of events. As the model size increases, the

event rate remains around 6M ∼ 7M event/second. The results indicate that

the performance of our testbed scales.

Table 3.1: Simulation Scalability Test Results Using AMI DDoS Test Cases

Block #Host #Link Simulation Time #Events Event Rate
(s) (M) (M Event/s)

2 X 2 112 392 13 62.3 4.78
4 X 4 448 1,953 69 509.9 7.34
8 X 8 1,792 8,691 658 4,414.0 6.70

16 X 16 7,168 36,501 3,958 25,636.3 6.48
32 X 32 28,672 149,702 16,491 107,855.7 6.54
64 X 64 114,688 604,566 63,180 437,452.4 6.92

3.2 SCADA Network: An Event Buffer Flooding

Attack in DNP3 Controlled SCADA Systems

The Distributed Network Protocol v3.0 (DNP3) protocol is widely used in Su-

pervisory control and data acquisition (SCADA) systems (particularly elec-

trical power) as a means of communicating observed sensor state information

back to a control center. Typical architectures using DNP3 have a two-level

hierarchy, where a specialized data aggregator device receives observed state

from devices within a local region, and the control center collects the aggre-

gated state from the data aggregator. The DNP3 communication between

control center and data aggregator is asynchronous with the DNP3 commu-

nication between data aggregator and relays; this leads to the possibility of

completely filling a data aggregator’s buffer of pending events, when a relay

is compromised or spoofed and sends overly many (false) events to the data

aggregator. We investigate the attack by implementing the attack using real

SCADA system hardware and software, and show the existence and effec-
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tiveness of the attack. A Discrete-Time Markov Chain (DTMC) model is

developed for understanding conditions under which the attack is successful

and effective. The DTMC model is validated by a simulation model and data

collected on real SCADA testbed.

3.2.1 Overview

SCADA systems are used to control and monitor critical infrastructure pro-

cesses including electrical power, water and gas systems. As such, SCADA

systems are critical to our daily lives. The United States is currently con-

ducting a major upgrade of its electrical system, making the grid “smarter”,

but in doing so adding more vulnerabilities. We have seen the consequence

when large areas lose power for an extended period of time [71], [72], [73]; the

obvious threat is that attackers harm the grid infrastructure through largely

electronic means.

We are interested in a vulnerability that arises within the communication

infrastructure of the grid. The DNP3 is the most widely used SCADA net-

work communication protocol in North America (approximately 75%) [74].

Designed to provide interoperability and as an open standard to device man-

ufactures, DNP3 has no notion of security, and most DNP3 devices lack

identity authentication, data encryption and access control. Although some

enhanced versions of DNP3, such as DNP3 Secure Authentication [75] or

DNPSec [76], have been developed but yet still under evaluation phase, the

majority of DNP3-controlled devices in SCADA networks are currently work-

ing with little protection.

Most existing works on DNP3 security scrutinize potential security risks

inherent in the DNP3 protocol specifications. A taxonomy of attacks across

all layers of the DNP3 protocol has been summarized to show the extent of

vulnerability of the protocol [77]. The attack we identified in this work is

against the vendor implementation as well as the underlying communication

structure. An attacker on the network can simply send many data events to

a device that temporarily buffers SCADA data before they are retrieved by a

control station. The attack fills an event buffer so as to prohibit the buffering

of critical alerts from legitimate devices, negatively impacting the control sta-

tion’s situational awareness. The simple attack works effectively because (1)
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many commercial DNP3 data aggregators implement shared event buffers

and (2) the communication between a control center and data aggregator

is asynchronous with the communication between the data aggregator and

relays. In addition, many proof-based DoS defense techniques, such as client-

puzzle and public/private key, may not work appropriately because SCADA

networks are generally resource-limited and have strong real-time require-

ments.

In a nutshell, the main contributions of this work are: (1) we identify a sim-

ple but very effective flooding attack in DNP3-controlled SCADA networks.

We prove the existence and effectiveness of the attack using commercial power

grid equipment in our lab; (2) we develop a DTMC model for analyzing the

effectiveness of the attack as a function of various behavioral parameters.

The analytical model has been validated by the data from the real testbed

and a simulation model created in Möbius [78]; and (3) we suggest some

countermeasures against this type of attacks.

3.2.2 Introduction of Distributed Network Protocol v3.0

The DNP3 protocol carries control and data communication among SCADA

system components. It is a master-slave based protocol, where a master

issues control commands to a slave and a slave collects data that is returned

to the master. Typically a utility has a central control station for managing

and monitoring its portion of the grid. The control station acts as a top-

level DNP3 master, gathering data from substations, displaying the data in a

human-readable formation, and making control decisions. A data aggregator

located in a remote substation serves both as a DNP3 master to control

and collect data from monitoring devices, and serves as a DNP3 slave to

transmit (on demand) all of the data it has collected back to the control

station. Figure 3.3 depicts the typical two-level architecture. DNP3 devices

were widely used on serial links in old days, and many of them are still in use.

Newer DNP3-controlled networks use TCP/IP-based connections where the

DNP3 message is embedded as a payload of the underlying layer’s packet.

As a result, DNP3 can take advantage of Internet technology and to conduct

economical data collection and control between widely separated devices.

Our work focuses only on the DNP3 over TCP communication.
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The data collected at the DNP3 slave is classified as being one of binary

data, analog data or counter data. Binary data is used to monitor two-

state devices, e.g. a circuit breaker is closed or tripped; analog data carry

information like voltage and current on a power line. Counters are useful for

reporting incremental values such as electricity usage in kilowatt hours. Data

is transmitted to a master via two modes: polling and unsolicited response.

In polling mode, a master periodically asks all the connected slaves for data,

typically in a round robin fashion. Polling mode can be further divided into

integrity polling and event polling. An integrity poll simply collects all static

data with its present values. An event poll only collects DNP3 events that

flag important changes, e.g. when a binary data value changes from an on

to an off state or when an analog value changes by more than its configured

threshold. In unsolicited response mode, a slave spontaneously sends DNP3

events to its master. A DNP3 master usually issues an integrity poll at

start-up and then primarily uses event polling, with periodic refreshes with

an integrity poll. The period of integrity polling (e.g. hourly) is generally

much longer than the period of event polling (e.g. a few seconds).

A DNP3 slave that is configured to use unsolicited response mode may

deliver data to a DNP3 master without being polled. This is useful for

reporting state changes where a reaction is time-critical. The attack we have

identified exploits the unsolicited response mode.

Control Station

Data 
Aggregator

Relay Relay...

Data 
Aggregator

Relay Relay...

...

Utility

Substations

IDEs

DNP3 Master

DNP3 Master/Slave

DNP3 Slave

Figure 3.3: A Typical Two-Level Architecture of a DNP3-Controlled
SCADA Network
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3.2.3 Threat Model

The buffer flooding attacks assume the ability to access the substation net-

work through some entry points, such as the utility’s enterprise network or

even the Internet. Although the flooding targets are the data aggregators

within a substation, the attacks do not assume the ability to compromise a

data aggregator. In order to flood the data aggregator’s event buffer, the

attackers must establish a connection with the data aggregator as a legit-

imated relay, which can be achieved by either spoofing a normal relay or

compromising a victim relay.

No authentication is currently supported in DNP3 protocol to prevent the

attackers from spoofing the relays. The attackers can suppress a normal relay

by redirecting the victim relay’s traffic to itself with techniques such as ARP

spoofing and then spoof the victim relay to re-establishing a new connection

with the data aggregator. The attackers can also act as a secret middle man

between the victim relay and the data aggregator and aggressively replay

unsolicited response events captured from the victim relay to exhaust the

buffer resource.

The buffer flooding attack can also be launched from compromised relays.

The reality is that the security of many commercial relays is only provided

by having each relay require a password. Once the single password is cap-

tured, the relay is fully compromised. Unfortunately, bad password practices

have always been observed in substation-level networks. Many operators do

not change the default password for the sake of convenience. The magic

words “otter tail” was definitely listed at the top of an attacker’s dictionary,

because it was used by a major relay manufacturer as a default password

and surprisingly was observed to remain unchanged over many SCADA sys-

tems. Furthermore, most relays do not have a limit on the number of log

in attempts, which could easily make a typical automated password cracker

software effective.

3.2.4 The Vulnerability

A data aggregator serves as a DNP3 master to relays and as a DNP3 slave to

the control station; one can think of it as having a master module and a slave

module. The master module queries relays and stores received events into
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the slave module event memory. The data aggregator responds to queries

from the control station by reading out portions of its slave module event

memory. The vulnerability arises because the aggregator’s polling of relays is

performed asynchronously with the control station’s queries to it. The slave

memory is therefore a buffer, filled by responses from relays and emptied by

a control station query.

Two types of event buffers are commonly used in commercial DNP3 slave

devices: sequence of event and most recent event. The former simply stores

all received data in the event buffer. Every new event occupies new buffer

space; if the buffer is full then the event is discarded. This type of buffer

is useful for various applications including grid state estimation and trend

analysis. By contrast, a most recent event buffer reserves space for each

individual data point that the aggregator might acquire. When an event

arrives, all the buffer locations associated with data points it carries are

overwritten, regardless of whether their current values have first been read

out by a control station query.

The potential vulnerability of interest arises with sequence of event buffers,

because it is feed by all slaves from which the data aggregator acquires data.

The attack has a compromised DNP3 slave (or an attacker on the network

successfully pretending to be a DNP3 slave) send so many unsolicited events

that the buffer is filled, and events from uncompromised slaves are lost until

the buffer is emptied by a query from the control station.

3.2.5 Experiments on Data Aggregator

Buffering Mechanism Experiments

The DNP3 specification describes the general guidelines on event buffer se-

mantics and leaves the implementation to vendors [79]. The vendor’s imple-

mentation is generally not publicly available. Therefore, in order to verify the

existence of this buffer flooding attack, we need to first conduct experiments

on a real data aggregator to understand its buffering mechanism.

The test data aggregator supports the three data types (binary, analog,

and counters) mentioned in Section 3.2.2. Each data type has an independent

buffer. To understand how each buffer works, we connected the device with
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relay A and relay B as two DNP3 slaves, and configured one host as a DNP3

master that plays the role of a control station. Initially, we set the size

of every buffer to 5, and cleared all the buffers in the data aggregator by

issuing sufficient integrity polls from the control station. Let Ai and Bi(i =

1, 2, ...) be the unsolicited response event sent from relay A and relay B to the

data aggregator respectively. Each event contains the same one data point

with a different value. Figure 3.4 is the time sequence diagram showing the

experimental results for all three data types.

A1 A2 A3 A4 A5 B1 B2

Relays
Data 

Aggregator
Control 

Station

A1 A2 A3 A4 A5
A1 B1 A2 B2 A3 A4 A5

A1 B1 A2 B2 A3

Counter

A1 A2 A3 A4 A5 B1 B2

A1 A2 A3 A4 A5
A1 B1 A2 B2 A3 A4 A5

A1 B1 A2 B2 A3

Binary

A1 A2 A3 A4 A5 B1 B2

A5 B2
A1 B1 A2 B2 A3 A4 A5

A5 B2

Analog

B1 B2 

Dropped

A4 A5 

Dropped

B1 B2 

Dropped

A4 A5 

Dropped

A1 A2 A3 

A4 B1 

Overwritten

A1 A2 A3 

A4 B1 

Overwritten

Figure 3.4: Time Sequence Diagram: Revealing Data Aggregator’s
Buffering Mechanism, Buffer Size = 5

The experimental results indicate the following:

• Buffers of all three data types have the first come first serve (FCFS)
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scheduling mechanism.

• The counter event and binary event buffers use “sequence of event”

mode, and thus are vulnerable to the buffer flooding attack. Once the

buffer was full, any incoming events were dropped, and the event buffer

overflow indicator bit in the head of the DNP3 message was observed

to be set to true.

• The analog event buffer uses “most recent event” mode; once the same

data point was received more than once before being read out, its stor-

age location was overwritten. Analog event buffers are immune to

flooding, because an attacker’s flooding affects only the buffer space

allocated for the attacker’s device.

Buffer Flooding Experiments

The next experiment launches buffer flooding attacks. The data aggregator

serves as the DNP3 master to two relays, and as a DNP3 slave to a control

station. The data aggregator polls the relays every 10 seconds. In addition

the relays also send unsolicited response events to the data aggregator. As-

sume one relay is captured or spoofed by the attacker and it can generate

many unsolicited response events and stop responding to polling requests.

The unsolicited response event traffic from the attacker relay is injected with

a constant inter-event time (which we will also refer to as “constant bit rate”).

A normal relay always provides three events in response to a polling request,

and also injects unsolicited response event traffic with an exponentially dis-

tributed inter-event time, with rate parameter three events per 10 seconds.

All the traffic contains only counter events. Each event takes a value from a

sequence number (continually incremented) to facilitate us identifying which

events are lost (by looking for gaps in the reported sequence numbers). For

these experiments we left the counter buffer at its default size of 50 events.

The control station periodically polls the data aggregator every 10 seconds.

The attacker sending rate is chosen from 1 event/sec to 20 event/sec; each

experiment generates 100,000 attack events. Figure 3.5 shows the fraction

of dropped events for the normal relay’s polling and unsolicited response

events, under various attacker sending rates. Both types of events start to

be lost when the attack rate is 5 event/s, because the buffer fills within
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one polling interval. The drop fraction increases as the attacker sending

rate increases, and is nearly 80% at an attack rate of 20 event/sec. The

sending rate can be no larger than network bandwidth / packet size. For

example, with a 10 Mb/s Ethernet connection and 100-byte packet (which

contains four DNP3 counter events), an attacker might send up to 50,000

counter events per second. From this we see that the buffer can be flooded

and cause significant loss of real events under attacks whose rates are far

smaller than the network line rate. Of course, the control station will realize

that events have been lost (because of a status bit in the DNP3 response),

and a burst of unusual unsolicited events could easily be noticed if a sniffer

was watching traffic (which is actually very unusual in real DNP3 contexts).

The flooding attack would be most effective if launched in coordination with

other attacks (perhaps even physical attacks), denying the control station’s

situational awareness of the state of the substation.
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3.2.6 Modeling and Analysis

Analytical Model

We developed a DTMC analytical model for investigating this buffer flooding

attack. The time-step is the control station polling interval length. The

DTMC state is the buffer size at the instant a control station poll request

arrives. Figure 3.6 depicts the data aggregator’s event buffer as a queueing

system. The system has three inputs: the unsolicited response events from

the attacker relay, polling events and unsolicited response events from the

normal relay. The shared buffer with finite size will drop any incoming events

once it gets full. The output is triggered by control station’s periodic polling

request. Figure 3.7 illustrates event arrivals within a control station’s polling

interval. Here we assume that the control station and the data aggregator

are configured to have the same polling interval.

Attacker

Normal Relay

unsolicited response

polling &unsolicited response

polling

Figure 3.6: Queueing Diagram of the Data Aggregator’s Event Buffer

k k+1
δ

s w

unsolicited response from attacker (CBR)
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periodic polling from data aggregator to normal relay

Figure 3.7: Timing Diagram of Event Arrivals
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The parameters of the analytical model are summarized as follows:

b event buffer size

m max number of events transmitting to control station from data

aggregator per control station poll

δ control station’s constant polling interval

r attacker’s unsolicited response event sending rate, events arrive

in constant bit rate

λ mean arrival rate of unsolicited response events from normal

relay, event arrival follows a Poisson distribution

w number of events collected from normal relay per data aggre-

gator’s polling

S normalized time within time-step at which bulk arrivals from

normal relay poll arrive

k time slot index, the time is slotted by the control station’s

polling interval

Q(k) number of events in the buffer at the beginning of kth time slot

A(k) total number of arriving events during kth time slot

N(k) number of unsolicited response events from normal relay during

kth time slot

D(k) number of departing events polled by the control station at the

end of kth time slot

The queueing system can be described by

Q(k + 1) = [min(Q(k) + A(k), b)−D(k)]+ (3.1)

The system can therefore be modeled as a DTMC, in which the time is

discretized by the control station’s polling interval. Let Q(k) be the state of

the Markov chain, Q(k) ∈ 0, 1, 2...b−m. The state transition probability is

derived by
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P (Q(k + 1) = j|Q(k) = i) =

P (i+ A(k) ≤ m) if j = 0

Pr(i+ A(k) ≥ b) if j = b−m

Pr(i+ A(k)−m = j) otherwise

(3.2)

P (A(k) = rδ + w +N(k)) = P (N(k) = n)

=
(λδ)ne−λδ

n!
, where n ∈ 0, 1, 2... (3.3)

The DTMC is time-homogeneous. Let Π = (π0, π1, ..., πb−m) denote the

state occupancy probability vector in steady state, where πi is probability

that the DTMC is in state i in steady state.{∑b−m
i=0 πi = 1

Π = ΠP
(3.4)

Let Li be the total number of dropped events per time slot in state i, i.e.

there are i events in the buffer at the beginning of the time slot.

Li = ((A− (b− i))+ (3.5)

where the distribution of A is specified in Equation (3.3), and the dependence

on k is removed from the notation as we are interested in the asymptotic

behavior.

The average number of dropped events per time slot is computed as

E(L) =
b∑
i=0

πiE[(A− (b− i))+] (3.6)

The ratio of expected dropped events of all types to expected events in a

time slot is

ρ =
E(L)

E(A)
=

E(L)

rδ + λδ + w
(3.7)

a value which by Jensen’s inequality [80] is a lower bound on the expected
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fraction of all events that are dropped.

The ρ bounds the overall fraction of dropped events (including attacker

events); of more interest is the fraction of events dropped from the normal

relay. Define Tf to be the time required (from beginning of a time slot) for

the buffer to fill in a time slot.

Pi(Tf = t|S = s) =

P (Nf = b− i− rt) if 0 ≤ t < s

∑w
j=0 P (Nf = b− i− brsc − j) if t = s

P (Nf = b− i− rt− w) if s < t ≤ δ

=



(λt)b−rt−ie−λt

(b−rt−i)! if 0 ≤ t < s

∑w
j=0

(λs)b−brsc−j−ie−λs

(b−brsc−i−j)! if t = s

(λt)b−rt−w−ie−λt

(b−rt−w−i)! if s < t ≤ δ

(3.8)

where Nf is the random number of unsolicited response events from normal

relay within Tf time; these events are not dropped. Time t is defined as

t ∈
{
b−i−z
r
, where z = 0, 1, 2...

}
∪ {s} and 0 ≤ t ≤ δ.

The average number of dropped unsolicited response events and polling

events from normal relay given Tf can be computed respectively as

E(Luri |Tf = t, S = s) = E(Luri |Tf = t) = (δ − t)λ (3.9)

E(Lpolli |Tf = t, S = s) =

w if 0 ≤ t < s

∑w
j=0(w − j)P (Nf = b− i− brsc − j) if t = s

0 if s < t ≤ δ

(3.10)

The average number of dropped unsolicited response events and polling
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events from normal relay within a time slot can be derived respectively:

E(Lur) =
∑b−m

i=0 πi
∫ δ
s=0

f(s) (3.11)∑
t P̄i(Tf = t|S = s)E(Luri |Tf = t, S = s)ds

E(Lpoll) =
∑b−m

i=0 πi
∫ δ
s=0

f(s) (3.12)∑
t P̄i(Tf = t|S = s)E(Lpolli |Tf = t, S = s)ds

where Pi(Tf = t|S = s) is normalized by

P̄i(Tf = t|S = s) =
Pi(Tf = t|S = s)∑
t Pi(Tf = t|S = s)

(3.13)

Thus, a lower bound on the expected fraction of lost normal unsolicited

response events is

ρur =
E(Lur)

λδ
(3.14)

while the exact expected fraction of lost normal polling events is

ρpoll =
E(Lpoll)

w
(3.15)

The ρpoll is exact because w is constant in this model.

Simulation Model

We also built a stochastic activity network (SAN) [81] simulation model with

respect to the real testbed setup in Möbius v2.3.1. Möbius was first intro-

duced in [82], with the goal of providing a flexible, extensible, and efficient

framework for implementing algorithms to model and solve discrete-event

systems. SAN, which is a stochastic extension to Petri net [83], is a high-level

modeling formalism supported in Möbius. SANs consist of four primitive ob-

jects: places, activities, input gates, and output gates. Activities (thick

vertical lines graphically) represent actions of the modeled system that take

some specified amount of time to complete. Places (circles graphically) rep-

resent the state of the modeled system. Input gates (triangles graphically)

are used to control the enabling of activities, and output gates (triangle with

its flat side connected to an activity) are used to change the state of the
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system when an activity completes. In Möbius, we can also define reward

variables that measure information about the modeled system.

Figure 3.8 shows the core design of the event buffer attack model. The

place “EventBuffer” models the shared finite event buffer in a data aggre-

gator. The event buffer queues events from three data sources, which are

modeled as three activities: attacker relay’s constant bit rate traffic, normal

relay’s Poisson arrival traffic and normal relay’s constant polling traffic, of

which two are deterministic processes and one is an exponential process. The

places “UR Drop” and “Polling Drop” are used to keep track of the number

of dropped unsolicited response events and polling events from normal relay

respectively. The fraction of dropped events are, for both types, set to be

steady-state reward variables for simulation study.

Figure 3.8: SAN Model of a DNP3-Controlled Data Aggregator’s Event
Buffer in Möbius

Model Validation

Both real testbed data and the simulation model are used to validate the an-

alytical model. All the parameters of the analytical model and the simulation

model are taken from the real testbed: b = 50,m = 50, λ = 0.3 event/second,

w = 3 event/second, δ = 10 seconds. Recall that S is the fraction of time

between successive control station polls that elapses before the data aggre-

gator poll delivers a bulk arrival to the buffer. We empirically determined

the probability distribution of S from testbed data based on 10,000 samples

and plot the empirical CDF of S in Figure 3.9. It is clear that S can be

modeled as a uniform distributed random variable between 0 to 10. With all

the parameters in analytical model and simulation model aligned well with
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Figure 3.9: CDF of S: Time Difference between Control Station’s Poll and
Data Aggregator’s Poll

real testbed setup, we vary the attacker sending rate from 1 event/second to

20 event/second with 1 event/second increment, and statistically compute

the mean fraction of dropped events for both unsolicited response events and

polling events from the normal relay. For all the reward variables in the

Möbius model, the confidence level is set to 0.99 and relative confidence is

set to 0.1, which means that results will not be satisfied until the confidence

interval is within 10% of the mean estimate 99% of the time. For every ex-

periment of the Möbius model, we conducted 10 independent runs with a

different random seed. For each experiment, the minimum number of runs is

10,000 and maximum number of runs is 100,000. During all the experiments,

the reward variables in the Möbius model are able to converge within the

maximum number of runs. The degree of closeness of two sets of data are

measured by the relative error. The relative error is defined as |ŷ−y|
y

, where y

is the baseline data and ŷ are the data points to compare with the baseline

data.

Figure 3.10 plots our estimates of the fraction of dropped events. The real

data curve plots empirically observed fractions, the simulation model curve

plots statistical estimates of the true observed fractions, and the analytic

model plots the analytic upper bound on the true observed fractions. For

the Möbius model, the results from the 10 independent runs have little vari-

ance and are extremely close to the testbed observations. The relative errors

are also listed in Table 3.2. It can be seen that the analytic estimates for

both unsolicited response and polling events match those of the simulation
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model with very small relative error. The analytical model and simulation

model also match well with the real testbed data. Therefore, the analytical

model is validated and can be used for quantifying how the attacker’s send-

ing rate blocks legitimate traffic on the test data aggregator; furthermore,

the simulation model can provide an accurate and flexible environment for

exploring the model’s parameter space for investigating the buffer flooding

attack.
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Figure 3.10: Estimated Fraction of Dropped (a) Unsolicited Response
Events and (b) Polling Events from Normal Relay, Experimental Results
from Real Testbed, Analytical Model and Simulation Model

Table 3.2: Relative Error of the Estimated Fraction of Dropped (a)
Unsolicited Response Events and (b) Polling Events from the Normal Relay

ŷ y
Relative Error of Drop Fraction

(a) UR Events (b) Polling Events
mean std mean std

Analytical Real 0.0245 0.0252 0.0535 0.0998
Simulation Real 0.0206 0.0221 0.0494 0.0754
Analytical Simulation 0.0056 0.0081 0.0105 0.0133

We observed that the test data aggregator simply sends everything inside

the buffer in response to a control station’s poll. If the number of events in

the buffer is large, they will be fragmented into multiple DNP3 data packets

that are resembled at the destination. Therefore, the real testbed has the

constraint that b = m and the corresponding DTMC model has only one

state. However, it is recommended that in the second-level DNP3 slave, such
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as the data aggregator in this case, the maximum number of items returned

per poll be configurable in order to avoid overwhelming the network link [79].

Since the feature has been supported in many commercial data aggregators as

well as by the Triangle Microworks’ DNP3 Test Harness [84], it is necessary

to evaluate whether the analytical model correctly captures the attacker’s

effect on the data aggregator when b > m. The simulation model is used as

a baseline to validate the analytical model. Let m = 30 and b = 50, now

the DTMC model has 21 states. While keeping the rest parameters with

the same values, we ran the same set of experiments on both the analytical

model and the simulation model, and plot the unsolicited response events and

polling events drop fractions in Figure 3.11(a) and 3.11(b) respectively. The

drop fractions derived from the Möbius model are again the average of 10

independent runs with little variance. The relative error of the unsolicited

response event drop fraction has mean of 0.0080 with standard deviation

0.0080, and the relative error of the polling event drop fraction has mean of

0.0066 with standard deviation of 0.0050. The extremely small relative error

indicates that the DTMC model can efficiently compute the drop fraction of

legitimate traffic as accurate as the simulation model.
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Figure 3.11: Estimated Fraction of Dropped (a) Unsolicited Response
Events and (b) Polling Events from Normal Relay, with b = 50, m = 30

Model Analysis

We then explore the impact on the drop fraction of key model parameters λ,

w, S and m. The idea is to vary only one selected parameter for every set of
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experiments, and again measure the relationship between the attack sending

rate and the fraction of dropped events. The baseline parameters are chosen

as follows: b = 50, m = 30, δ = 10, λ = 0.3, w = 3, and S is uniformly

distributed between 0 and 10. Figure 3.12 displays the plots of drop fractions

versus attacking rate for every selected parameter.

The λ is the mean arrival rate of unsolicited response events from normal

relay. Figure 3.12 (a1) and (a2) show that all the lines with different λ values

tend to converge as the attacker sending rate increases. Once the attacker

sending rate is greater than 10 event per second, which is easy to achieve, λ

has a small impact on both types of dropped events.

The w is the number of events collected from the normal relay in response

to a data aggregator’s poll. Similar to the impact of λ, the lines tend to

converge as the attacking rate increases and thus w also has a small impact

on both types of event drop fractions, especially on the unsolicited response

events.

The S is the time offset between neighboring control station’s poll and data

aggregator’s poll. The variation we noted earlier was taken over successive

experiments. Under the assumption that polling intervals of both the control

station and the data aggregator are constant, in any given experiment S will

be constant. We vary it here to see what impact a given constant S may

have. It has little impact on the unsolicited response events. Within a polling

interval, the number of attacking events is much more than the number of

the normal relay’s polling events, therefore when the polling events arrive

has minimum impact on the drop fraction of the unsolicited response events

from the normal relay. However, the value of S greatly affects the fraction

of polling events that are dropped. If the polling events arrive right after

the previous control station’s poll, there is always space in the buffer to

hold them. On the other hand, if the polling events arrive just before the

next control station’s poll, the buffer has almost surely been filled up by the

attacking events.

The S varies in real scenarios because of the uncontrollable variance in

the clocks that DNP3 masters use for issuing periodic polling requests. One

enhancement could be developing rules on the data aggregator to generate

polling requests to all the connected relays right after a control stations’s poll

(use multicast if supported), the polling events from normal relay can possibly

enter the data aggregator’s buffer before the attacking events overflow the
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Figure 3.12: Model Analysis: Fraction of Dropped Unsolicited
Response/Polling Events vs. Attacking Sending Rate with Varying (a) λ
(b) w (c) S (d) m
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buffer and minimize the fraction of dropped packets.

The m is the maximum number of events transmitted to control station in

response to a control station poll. Larger m essentially means a larger service

rate, and results in more available buffer space at the beginning of each time

slot. Therefore, the fractions of dropped events of both types are reduced

as shown in Figure 3.12 (d1) and (d2). However, increasing m is generally

not a good solution, because the control station actually wastes even more

resources including processing power and communication bandwidth to serve

the attacking events. As a result, the attacker’s impact effectively propagates

to the communication between the control station and the data aggregator.

3.2.7 Countermeasures

The key reason that the buffer flooding attack works is that buffer space is

shared among sources, and use of the buffer follows a first-come-first-serve

rule. The fraction of service that a data flow receives is always proportional

to its input rate with FCFS policy when the buffer is congested. Therefore

a high load flow like those of the attacker relay’s unsolicited response events,

can occupy most of the bandwidth, and influence the low load flows, such

as the unsolicited response events and polling events from the normal relay.

Another class of scheduling policies is designed with the goal of providing fair

queueing [44], such as round robin (RR), weighted round robin (WRR) [45],

weighted fair queueing [85] and virtual clock [46]. Applied in this context,

the fair queueing scheduling policies aim to ensure that every input flow

has reserved buffer space, and the additional buffer space will be equally

distributed among flows that need more. Therefore, a reasonable defense

against the buffer flooding attack is to allocate space in a shared event buffer

according to a fair queueing policy. Round robin based scheduling could be a

good choice due to the low time complexity O(1) and the low implementation

cost [47].

As specified in the DNP3 protocol standard, every DNP3 slave’s appli-

cation response header contains a two-octet internal indications (IIN) field

[79]. The bits in these two octets indicate certain states and error conditions

within the slave. The third bit of the second octet indicates that an event

buffer overflow condition exists in the DNP3 slave and at least one uncon-
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firmed event was lost because the event buffers did not have enough room

to store the information. The overflow condition continues to hold until the

slave has available event buffer. It provides a means for the DNP3 master to

detect whenever a buffer overflow occurs, however, the action recommended

by the DNP3 user group, and in fact many vendors implemented in their

products, is to issue an integrity poll in order to re-establish the current

state of all data in the slave device [86]. However, the action is not sufficient

to protect the device from the flooding attack discussed in this work. The

integrity poll is passively issued upon receiving a response from DNP3 slave,

and therefore it can only delay the time that next buffer overflow occurs.

In addition, an integrity poll simply asks for all the static data rather than

changed events, therefore generating many integrity polls could potentially

overwhelm the network link between data aggregator and control station,

and as a result, unintentionally wasting bandwidth and processing resources.

One improvement could be applying rule-based policies to limit or filter the

attacking traffic. For example, if relay A causes three successive sets of the

event buffer overflow indication bit, the data aggregator will filter any data

traffic whose DNP3 source address is of relay A. The rule will continue to take

effect if the upcoming traffic from relay A exceeds a configured threshold. In

addition, if the data aggregator’s scheduling algorithm involves computation

of weight, such as weighted round robin and weighted fair queueing, we could

associate the event buffer overflow indication with an extremely small weight,

and therefore minimizes amount of the attacking traffic entering the event

buffer.

Lack of authentication in the DNP3 protocol enables attackers to spoof

normal relays. Researchers are actively working on various forms of crypto-

based solutions to establish strong authentication in the SCADA environ-

ment, such as studying the practicality of various forms of key management

[87], examining the practicality of using puzzle-based identification tech-

niques to prevent DOS attack in a large-scale network [88], or evaluating

enhanced DNP3 protocols like DNP3 Secure Authentication [75] or DNPSec

[76].
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3.2.8 Related Work

DNP3 was designed without concern for security because SCADA networks

were physically isolated with other networks at that time. However, with the

growing of smart grid technologies, dependences of critical infrastructures

on interconnected physical and cyber-based control systems grow, and so

do vulnerabilities. The buffer flooding attack discussed in this work targets

data aggregators, and results in the loss of awareness in the control center.

Detailed attacks against DNP3 specifications across all three layers were also

proposed and classified into 28 generic attacks and 91 specific instances [77].

The impact of those attacks could result in loss of confidentiality, loss of

awareness and even loss of control. A survey of SCADA-related attacks

was conducted in [89], covering techniques of attack trees, fault trees, and

risk analysis specific to critical infrastructures. The buffer flooding attack

overwhelms the limited buffer resources in data aggregators, and thus it

belongs to the class of DoS attacks. DoS attack and defense mechanisms in

the Internet have been studied and classified in [90]. The real-time constraints

and limited resources of the SCADA network makes the defense of such DoS

attack even hard. Much research has also been done on realistic cyber attack

vectors [91], [92], [93] and security gaps [94], [95], [96] specific to SCADA

networks.

Investigation of attack vectors and security gaps will result in remedia-

tion techniques that can provide protection. Research has been done on

countermeasures specific to DNP3 attacks, including data set security [97],

SCADA-specific intrusion detection/prevention systems with sophisticated

DNP3 rules [98], [99], and encapsulating DNP3 in another secure protocol

such as SSL/TLS or IPSec [100]. Design guidances for authentication pro-

tocols based on extensive studies of the DNP3 Secure Authentication was

proposed in [101]. Clearly, the smart grid technologies will bring much more

attacks to the existing and new SCADA networks, therefore both indepen-

dent researchers and government officials have formed workgroups [102] to

investigate and offer their advice [103].
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3.3 Demand Response: Evaluation of Network Design

and Hierarchical Transactive Control Mechanisms

Smart-grid technologies seek to enhance the electrical grid’s efficiency by

introducing bi-directional communication and dynamic adaptive control be-

tween energy suppliers and consumers. We develop a large-scale network sim-

ulation model for evaluating such a hierarchical transactive control system

that is part of our work on the Pacific Northwest Smart Grid Demonstration

Project. The transactive control system communicates local supply condi-

tions using incentive signals and load adjustment responses using feedback

signals in a distributed fashion in order to match the consumer-desired load

to the utility-desired supply scenario. We study the system protocol and a

dynamic control mechanism that is implied by the design under a reason-

able collection of models that capture load variation, stochastic signal losses,

consumer fatigue to demand response and certain “stickiness” criterion on

the control signals that arise out of physical constraints. Our results indicate

that the control mechanism can perform adequately in adjusting the aggre-

gate supply-demand mismatch, and is robust to steady transactive signal

losses.

3.3.1 Transactive Control for Demand Response Management

With the advent of the smart grid, the infrastructure for energy supply gen-

eration and transmission is experiencing a transition from the current cen-

tralized system to a decentralized one. The ability to access and act upon

real-time information on supply availability and prices supported by the de-

mand offers unique opportunities to improve the overall efficiency of the grid

in terms of both long-term supply-demand management as well as near-term

dispatching of diverse generation facilities to meet current demand. The

responsiveness and flexibility envisioned for the smart grid provides addi-

tional advantages in facing the significant new challenges ([104, 105, 106]) of

integrating distributed and intermittent generation capability such as small-

scale generators and renewable energy sources (wind, solar, etc.) at a scale

unmatched by current grid technology. This is critical to renewable energy

technologies playing a more prominent important role in the portfolio mix of

electricity generation.
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We have embarked on a comprehensive smart grid demonstration project

in the Pacific Northwest involving 60,000 customers from 12 utilities across

five states, covering the end-to-end electrical system from generation to con-

sumption, built around a substantial infrastructure of deployed smart meters:

[107] describes our effort in greater detail. This unique smart grid demon-

stration spans the electrical system from generation to transmission and dis-

tribution to ultimately end-user load. The demonstration will test more than

20 types of responsive smart grid assets applied to six specific regional and

utility-level operational objectives at 14 unique distribution sites operated by

12 utilities. All end-use classes will be well represented including residential,

commercial, and industrial customers.

In transactive control, responsive demand assets bid into and become con-

trolled by a single, shared, price-like incentive signal called the Transactive

Incentive Signal (TIS) in our project. The TIS may be, in turn, influenced

by many local and regional operational objectives of the electric power grid.

Responsive assets include at the household level appliances such as ther-

mostats, water heaters and clothes dryers, and at the commercial level assets

with higher demand characteristics such as HVAC systems, distributed diesel

generators, a gas turbine and municipal water pumps. Appropriately formu-

lated control algorithms automatically generate bids and offers from these

responsive demand assets based on user preferences and the degree to which

the assets preferences (e.g., room temperature or water level) had been sat-

isfied. The returned load estimate signal is called the Transactive Feedback

Signal (TFS) in our system. Energy management systems, both commer-

cially available and specially engineered devices and collectively called smart

meters, generate and communicate back the asset’s response as well as take

local actions upon the value signals and bids by adapting demand accord-

ingly. This diversity of system components will be coordinated and controlled

via the Internet from the project control center at the Pacific Northwest Na-

tional Laboratory. The transactive signaling is supported by a communi-

cations backbone built in partnership with IBM using their Internet-Scale

Control System (iCS).

We develop a network simulation model that captures the relevant aspects

of the system protocol and illustrates whether, and how well, one of the

central goals of this demonstration project is being met: how can transac-

tive control be used to manage the distribution problem of peak demand,
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Figure 3.13: Hierarchical Architecture of the Smart Grid

and improve system efficiency and reliability at such a large scale. Figure

3.13 illustrates a schematic of the proposed hierarchical structure. In this

figure, the incentive value signals flow downstream toward the left, while

the corresponding demand signals flow upstream toward the right. Note

that responsive assets (respectively, value signal calculations) do not occur

only at the extreme downstream (respectively, upstream) locations in the

figure. Indeed, just as every node in the hierarchy can interject the degree

of meeting its own operational objectives, responsive assets can reside quite

far upstream, even at the transmission nodes in form of flow control devices,

resource dispatch practices, and voltage control devices. At each node in

this hierarchy a demand signal is aggregated from its children nodes, and

a price (or value signal) is calculated using information obtained from its

parent nodes.

Our primary measure of performance of a control algorithm measures the

aggregate (weighed) mismatch between the utility’s desired level of load and

the consumer’s aggregate desired level. We study a distribution network with

a top-down tree structure where multiple end-users ultimately draw their

power from a single distributor. Our model attempts to capture a number

of relevant features of real distribution systems and electricity consumption:
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• The characteristics of the communication protocol used by the demon-

stration are faithfully modeled.

• We provide a simplified version of the control algorithm for all the

various types of nodes in the model.

• The simplest control algorithm sends no information through the sig-

nals and models the no-smart-grid case.

• Demand response is often observed to be a nonlinear function of in-

centives. We study both a simple linear model as well as a nonlinear

model.

• Users express fatigue in responding to repeated signals to reduce de-

mand. We explore a specific fatigue-model that changes the forecast

demand of the user in periods subsequent to ones where load is shed in

response to incentive signals.

• Electrical system dynamics place a heavy penalty on the system when

loads exhibit high volatility. We study control algorithms under a set-

ting where the transactive signals for a specific future time period are

required to be within pre-specified bounds in subsequent signals.

• The local area network connecting households to the smart grid is ex-

pected to have some reliability challenges, and our model captures sig-

nal losses and studies the impact of such losses.

Combinations of these various factors complicate the control problem of

managing the utility’s demand load. We study each addition in turn and

illustrate the value of or limitation placed by each. We emphasize here that

this list is by no means complete, examples of which include end-users who

draw from two or more distributors, end-users who collude with each other

etc.

We design and implement the transactive control algorithm model and the

underlying timing and network protocols with all the previously identified

features in the S3FNet discrete-event network simulator based on the second

generation of the scalable simulation framework (SSF) [1], which enables us

to evaluate various control models in large scale up to 100,000+ transactive

nodes and links. The simulation results show that with reasonable settings
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of the fatigue experienced by consumers and the stickiness of the transactive

signals, the elasticity control models are able to properly adjust the aggre-

gated consumer-desired load to the utility-desired load. In addition, the

control algorithm is quite robust to steady signal loss.

3.3.2 Transactive Control System Design and Modeling

System Overview

Figure 3.14 depicts a hierarchical two-level power grid control system. At

the consumer level, thousands of smart meters form the advanced metering

infrastructure (AMI) network, in which various wireless technologies are de-

ployed. The meters can be arranged to form tree, star or mesh topologies

depending on their geographical distribution. We primarily investigate the

tree structure for this demonstration project and plan to extend the work to

other topologies in the future. The meter data are aggregated at the AMI

gateways, which communicate directly to the substations. Each substation

monitors the load of its portion of the grid in real time, and communicate

with the utility head-end to ensure the situation awareness of the grid. The

utility head-end usually resides in the enterprise network and is equipped

with sufficient computing resources and storage. The head-end overviews

the load of its portion of the grid, perform computational-intensive tasks

such as demand forecast, state estimation and pricing control, and making

system-wide management decisions.

One key feature of the transactive control system is the bidirectional con-

trol communication, and the smart meters at the consumer end are capable

to make local decisions. A transactive nodes is defined as a physical point

within an electrical connectivity map of the system. The utility, substations

and consumers are all considered as the transactive nodes. Each transactive

node can send and receive transactive signals. The consumers receive incen-

tive signals from the utility containing the cost information (e.g. a lower

price for future load reduction), and generate a corresponding feedback sig-

nal containing the demand change information to be sent back upstream.

In the substation-level nodes, components of the incentive and feedback sig-

nals must be additively combined into one incentive and one feedback signal.
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Figure 3.14: Two-Level System Architecture

The substations are assumed not to modify the incentive and feedback signals

based on the local responsive assets in this work and we plan to integrate

sophisticated local decision making algorithms at substations in the future.

Transactive Node Control Algorithm

Notations

A summary for all the notations used in the proposed models is provided

as follows, to aid in reference.

N Total number of transactive nodes at bottom level

k Index of time interval

i Index of consumer

Du Utility-desired load

Dc Total consumer-desired load

εc Elasticity of the individual consumer
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εu Integrated elasticity at the utility/substations

C Cost signal (in TIS) generated at the utility

∆C Change of cost at the utility

C0 Initial cost set by the utility

c Cost received at the individual consumer

∆c Change of cost observed at the consumer

∆d Change of demand (in TFS) generated at the consumer in re-

sponse to the received TIS from the utility

∆dmax Maximum load change at the individual consumer

∆Dmax Maximum load change at the utility

Assumptions

A1. The same TIS is passed to all the consumers from the utility, i.e. ci(k) =

C(k).

A2. At each time interval, the consumer’s elasticity is subjected to a small

disturbance with constant variance. We assume

εci(k) = εci(0) (1 + z(k)) , where z(k) ∼ N(0, σ2) (3.16)

A3. The utility and the substations update the integrated elasticity using the

load adjustment function F , which is the same as that at the consumer

level f , i.e.

F (εu(k),∆C(k)) = f(εu(k),∆C(k))

=
∑N

i=1 f(εci(k),∆ci(k)) (3.17)

and the integrated elasticity for deciding the next TIS is updated by

εu(k) = f−1

(
N∑
i=1

f(εci(k),∆ci(k)),∆C(k)

)
(3.18)

127



A4. The upper limits for the load reducible of all consumers are approxi-

mately equal, i.e.

∆dmaxi =
1

N
∆Dmax (3.19)

Linear Load Adjustment Model

The linear load adjustment function is defined as

f(εc,∆c) = −εc∆c (3.20)

At time interval k, the consumers receive the TIS C(k), and the TFS sent

to substations is

∆di(k) = −εci(k)[C(k)− C0] (3.21)

After collecting all the available TFS for the time interval k, the util-

ity/substations update ∆D(k) =
∑N

i=1 ∆di(k), and then calculates the inte-

grated elasticity using Equation (3.18),

εu(k) = f−1
(∑N

i=1 ∆di(k),∆C(k)
)

= −∆D(k)

∆C(k)
= −D

u(k)−Dc(k)

C(k)− C0

(3.22)

After receiving the updated information on consumer load profile, the util-

ity calculates the TIS sent to consumers in the next time interval as

C(k + 1) = −D
u(k + 1)−Dc(k + 1)

εu(k)
+ C0 (3.23)

Nonlinear Load Adjustment Model

It is more realistic to consider the situation that the consumers are more

reluctant to reduce load with the continuous same amount of price change.

Such demand response behavior leads to concavity of demand response func-

tion [108]. Consider the load adjustment function defined by

f(εci(k),∆ci(k)) = −I{∆ci(k) > 0}g(εci(k),∆ci(k))

+I{∆ci(k) < 0}g(εci(k),∆ci(k))
(3.24)
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where

g(εci(k),∆ci(k)) = ∆dmaxi (k)− 1

εci(k)|∆ci(k)|+ 1

∆dmaxi (k)

(3.25)

and I{·} is the indicator function. Here we assume that ∆Dmax(k) equals

αDc(k) with α ∈ (0, 1) representing the overall maximum percentage load

reducible. Thus by A4, we have

∆dmaxi (k) =
1

N
αDc(k) (3.26)

The TIS/TFS update procedure is the same as that described for the linear

case.

Sticky Price

In the transactive control system, TIS/TFS can only offer information up

to a certain limited amount of time in the future, which bounds the change

in both TIS and TFS due to the relative short-period view of the entire

system. In addition, there is always a lower bound of the price that the

utility is willing to offer. The price is highly dependent on the time-varying

spot market price. In the current model, we simplified these constraints by

adding an upper bound for ∆C(k) as ∆Cmax.

Fatigue Model

In reality, consumers more or less tend to be less sensitive to price change

in consecutive several time intervals. The load reduced earlier will eventually

shift to a later period time and vice versa. For example, a customer stopped

charging the electrical vehicle for avoiding peak hour electricity cost will have

to charge the car at some point. Therefore, a consumer’s elasticity is nega-

tively correlated across the time horizon. Such response fatigue phenomenon

has been investigated in [109], [110]. We integrate a consumer fatigue model

into the elasticity model by adjusting the total consumer-desired load curve

according to previous TFS at each time interval as

D′c(k) = Dc(k) + β
N∑
i=1

∆di(k − 1) + β2

N∑
i=1

∆di(k − 2) (3.27)

with the decaying factor β ∈ (0, 1).
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Distributed Timing Protocol

Time is an important component of transactive control. Diverse smart grid

resources can have different time characteristics such as the time limitation

due to operational control of physical equipment or market operation, the

duty cycle of a physical asset, and the time constraints of a communication

network in part of the system. Therefore, it is essential to ensure applica-

tions with different time constraints to be interoperable under the transactive

control framework.

Figure 3.15 shows the proposed timing protocol of the transactive control

system for the demonstration project. It is flexible to choose variable update

time intervals and the demonstration project has elected to use a constant

update time interval 5 minutes in length. Each time interval is further divided

into three sections, and each section performs the corresponding task based

on the latest received transactive signals. This highly distributed protocol

enables the intelligence to be shifted from the centralized head-end down to

thousands of smart devices in the grid. Since the TIS and TFS that interact

with each other along a particular transactive control pathway are time-

aware and time-sensitive, adopting event-driven and unsynchronized data

communication is one of the architectural decisions. Whenever a new event

arrives, the transactive node immediately processes the event and if necessary

propagates the event to the destination for keeping the freshness of the local

transactive signals and minimizing the end-to-end delay, which ensures the

efficiency of the control algorithm running on top of the timing protocol.

1 min
15 s

3 min 30 s

Data processing  and new TIS/TFS generation 
TIS/TFS transmission to neighbors 
Decision making based on latest received TIS/TFS

1:35 pm 1:40 pm 1:45 pm

15 s

Figure 3.15: Distributed Timing Protocol

3.3.3 Simulation Results

The simulation experiments are designed to investigate the various control

algorithms of the transactive nodes in a small town level network. All the test
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cases are constructed with the two-level tree topology, in which a utility node

is connected to 10 substations with 1 Mb/s bandwidth and each substation is

connected to 100 consumers with 10 Kb/s bandwidth. The initial elasticity,

εci(0), for all the consumers are uniformly distributed between [0.1, 0.4]. All

the experiments are running for 24 hours in simulation time. The utility-

desired load represents a typical winter weekday load collected from PNW

Demonstration Program [70].

To qualitatively evaluate all the proposed models, we define the goodness

of measurement φ by aggregating the difference between the utility-desired

load and total realized load from consumers through the transactive control

system, and weighted by the percentage of utility-desired load for each time

interval, i.e.

φ = 1− λ

λ′
(3.28)

where

λ =
∑

k[(D
u(k)−Dc(k)−

∑N
i=1 di(k))2 D

u(k)

Du
m(k)

] (3.29)

λ′ =
∑

k[(D
u(k)−Dc(k))2D

u(k)

D̃u(k)
] (3.30)

where D̃u(k) =
∑

kD
u(k).

Linear Load Adjustment Model

Figure 3.16 shows the load adjustment with the linear load adjustment model.

The realized load includes the total demand change reported through TFS

by all the consumers. Provided that no signal loss occurs, the consumer-

desired load is nearly perfectly adjusted to the utility-desired load for every

time interval regardless of peak hours or non-peak hours (φ = 0.998). This is

because the same cost change information is passed down to all the consumers

and the same linear load adjustment function is applied at both the utility

and the consumers. The elasticity at the utility is ideally equivalent to the

sum of the elasticity of all the consumers, and thus can be accurately derived

by Equation (3.18).
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Figure 3.16: Linear Elasticity Model - Utility Load Adjustment

Nonlinear Load Adjustment Model

We then run the same test case with the basic nonlinear load adjustment

model with various ∆Dmax. Figure 3.17 shows the results with α = 10%,

20%, and 30% respectively. Less load adjustment is observed with the same

price for the nonlinear case than the linear case. This is because the nonlinear

model uses a strictly concave load adjustment function. The figure also briefly

shows the impact of the sticky TFS. As ∆Dmax increases, φ significantly

improves (0.438 for α = 10%, 0.819 for α = 20% and 0.961 for α = 30%) and

the realized load is observed to shift away from the consumer-desired load to

the utility-desired load.

Sticky Price

The cost that a utility is willing to offer is bounded by many facts including

spot market price, accuracy of the demand estimation and consumers’ feed-

back. Therefore, we integrate an upper bound of the cost change (∆Cmax)

in the nonlinear load adjustment model. This set of experiments explores

the impact of the ∆Cmax to the system. Figure 3.18 plots the goodness of

measurement under various ∆Cmax and Figure 3.19 shows the one day’s cost

with ∆Cmax = 5, 10, 20 cents/kWh respectively. We can see from Figure 3.18

that as ∆Cmax grows, the improvement tends to slow down. A small ∆Cmax
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Figure 3.17: Nonlinear Load Adjustment Model - Utility Load Adjustment
with Various Maximum Load Change (∆Dmax(k))

limits the system’s capacity to offer enough incentive to the consumers and

thus less load adjustment is conducted at the consumer side. As shown in

Figure 3.19, when ∆Cmax is small, the offered cost is more likely to hit the

maximum indicating that the cost offered is not sufficient of the desired load

change. On the other hand, when ∆Cmax is already large enough to cover

most consumer’s elasticity, simply offering more price change has less and less

impact. First, there is still the portion of consumers whose electricity usage is

insensitive to cost change. Second, people have demand bottom-lines. Even

those people with high elasticity are not willing to sacrifice certain activities

merely for cheap electricity cost. Therefore, it is important for the utility to

pick up an optimal ∆Cmax to ensure the efficiency of the transactive control

system.

Fatigue Model

In the next step, we integrate the fatigue model described in Section 3.3.2

into the nonlinear load adjustment model and study its impact on the whole
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Figure 3.19: Nonlinear Load Adjustment Model with ∆Cmax - Cost

system. ∆Cmax is set to 20 cent/kWh and ∆Cmax is set to 20%D̃(k). Figure

3.20 compares the load adjustment between the model without fatigue and

the model with 40% fatigue. With the fatigue model, the consumer-desired

load increases in most time intervals. It is because some portion of the early

adjusted load is shifted back to the current time interval. The utility has to

deal with the extra the load change, which is hard to accurately estimate in

practice, when making decision of the cost for the next interval. Therefore,

the realized load generated with the consumer fatigue model gets farther
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Figure 3.20: Nonlinear Load Adjustment with Fatigue Model - Utility Load
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away from the utility-desired load than the realized load without fatigue

model, especially during the peak hours when the desired demand change is

relatively large.

Transactive Signal Loss

There are two major sources of packet loss in the computer network: buffer

overflow in the intermediate forwarding devices, such as switches and routers,

as a result of limited buffer size and network congestion; and the lossy links

interconnecting various network components. The majority of the lost pack-

ets in the wire-line networks are caused by the buffer overflow, while lossy

channel or link failures occur more frequently in the wireless networks due

to noise, interference, and channel fading. The smart grid is a large-scale

complex network consisting a wide variety of communication technologies.

When transactive signals are communicated between the utility and the con-

sumers, they may travel through different types of networks and numerous

networking devices, and losses can occur anywhere. Since signal losses are
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Figure 3.21: Nonlinear Load Adjustment Model with Signal Loss and
Fatigue Model - Goodness of Measurement

unavoidable, and it is good to design the control algorithm to be robust to

some reasonable amount of signal losses.

We implement a dropping packet feature in every node and every link,

so that modelers can specify the amount of traffic to be randomly dropped

during simulation run time. In this set of experiments, we specify the drop

rate from 1% to 10% on both directions to simulate both TIS and TFS

losses. ∆Cmax is fixed to 20 cent/kWh and ∆Cmax is fixed to 20%D̃(k).

Figure 3.21 shows the goodness of measurement for various combinations of

loss rate and fatigue level. We can see that loss slightly reduces the goodness

of measurement at all fatigue level. Given the loss rate as high as 10%,

the goodness of measurement is reduced by less than 0.1. Since less TFS are

collected at the utility, there will be a derivation of the consumer desired load

in utility’s perspective from that actually occurred. However, this derivation

is automatically captured by the way that the utility updates the integrated

elasticity εu(k) in each time interval. By providing an updated price with

consideration of the signal loss, the system can still efficiently bring down

the load to the utility-desired level. Figure 3.22 depicts the impact on the

cost. Given that 20 cent/kWh is the base price, the price produced with the

10% signal loss case has larger changes than the no loss case. Therefore, our

algorithm is quite robust to steady signal loss with the side effect of bigger

jump in price.
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Figure 3.22: Nonlinear Load Adjustment Model with Signal Loss - Cost

3.3.4 Related Work

Research in the area of demand response and real time electricity pricing

has been quite active. Customized electricity pricing agreements between

an utility and its key customers are proposed in [111], using a what-if dis-

crete event simulation procedure. The experiments of residential customer

response to real time pricing in Anaheim area, where the real time pricing

was only restricted to critical peak hours, is described in [112]. The methods

to classify customers into two demand response programs, i.e. day ahead

and real time programs and to help the supply side to build a more efficient

contract portfolio is investigated in [113]. Analytical results for multi-period

demand response program with customized real time pricing mechanism are

provided in [114]. In particular, the stability issues with real-time pricing are

investigated in [115].

In the field of transactive control mechanisms for the smart grid, a recent

implementation and results of a smart grid field demonstration in Washington

and Oregon are presented in [70], wherein two-way communication signals

are used to coordinate load profile and price signals. The generalization and

standardization of the transactive control approach is described in [116]. A

comprehensive smart grid demonstration project in the Pacific Northwest

is described in [107] and it demonstrates how transactive control can be

used to manage distributed generation and demand response. A five-minute

slotted communication protocol for power scheduling at home area network
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using real-time price provided by the smart meters is investigated in [117].

Another important type of the transactive control network for the smart grid

is the wireless mesh network. The optimization of the geographical routing in

the wireless mesh networks, and the potential usage of such information for

optimizing the distribution and collection of transactive signals are presented

in [118].

3.4 Chapter Summary

This chapter shows how our network testbed can be used for security and

performance evaluation of applications in critically important infrastructures.

It provides the capability and flexibility to set up a testing scenario with real

emulated hosts modeling complicated applications and large-scale simulated

network environment. Three applications are explored and reported in this

chapter.

First, we present a case study that highlights a potential Distributed De-

nial of Service (DDoS) attack we discovered in an AMI system that uses

the C12.22 transport protocol. This scenario requires detailed functional

behavior of some meters (those ones directly involved in the attack), but

only routing and background traffic behavior from the others. Therefore, we

emulated a few meters with the rest of the meters and the communication

network being simulated. The whole experiment has been done on a single

multi-core machine, and this makes the experiment economic and flexible to

set up with different network topologies.

Second, we investigate a buffer flooding attack on DNP3-controlled data

aggregators. The attacker spoofs or captures a normal relay, and floods the

connected data aggregator with unsolicited response events as if they are

coming from the victim relay. The goal is to overload the shared event buffer

in the data aggregator so that events from other normal relays will be dropped

upon arriving to a full buffer. The attack has been implemented on a real

data aggregator. Also a DTMC model and a simulation model have been

developed for analyzing the behavior of such attacks. Results have shown

the simple flooding attack can be very effective, and strong authentication is

definitely required toward securing the DNP3-controlled SCADA networks.

Finally, we develop a transactive control network simulation framework
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in our testbed, and evaluate several transactive control algorithms models

within this framework. Specifically, we study a two-level hierarchical archi-

tecture of power distribution. The simulation framework and control algo-

rithms can be extended to more complex multi-level tree topologies. We

have investigated impact of customer-varying pricing in the context of de-

mand response in [114], and plan to integrate the idea with detailed customer

elasticity models into this simulation framework. Another avenue of future

research includes the case where utilities are purchasing electricity from var-

ious generation sources and must dynamically choose the schedule of power

to be drawn from each. Also interesting is the case where multiple utilities

can provide services to the same group of consumers, which impose strong

constraints on the offered dynamic price. We plan to create detailed mod-

els of dynamic pricing and investigate its impact on this transactive control

network.
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CHAPTER 4

CONCLUSIONS AND FUTURE
DIRECTIONS

4.1 Summary of Thesis Research

There is emerging awareness of the need for security in the communica-

tion networks of the power grid, and the government is giving considerable

attention to securing the power grid. However, the large size of the net-

work and the fast evolution of technology often make it infeasible to conduct

evaluation experiments on real-device testing systems. Network simulation

and emulation help to address this concern, as it is possible to create net-

work simulation/emulation models as large as regional or even national power

grids. With the goal of building a large-scale network testbed to facilitate

research on the smart grid, we developed a parallel network simulator named

S3F/S3FNet, and an OpenVZ-based network emulation system whose net-

work transactions are timestamped in virtual time. We then integrated the

two systems to create our network testbed, in which emulation is used for

executing native programs to ensure fidelity, and simulation is used to model

a large-scale communication environment and background traffic. We have

utilized the testbed to create several large-scale simulation/emulation mod-

els for evaluating various smart grid applications including a DDoS attack

in an AMI network, an event buffer flooding attack in a DNP3-controlled

SCADA network, and demand response control algorithms in a hierarchical

transactive control network.

4.2 Future Directions

Our long-term goal is to conduct research in cyber-security, networks, and

simulation and modeling in order to build more secure, resilient, and safe
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computing and communication networks. Some future directions are high-

lighted in the following section.

4.2.1 A Virtual Power System Testbed for Security
Evaluation and Decision Support

It is crucial that cyber-security be brought to the cyber-infrastructure that

controls the electric power grid. There are many decisions to be made con-

cerning whether to protect, what to protect, how much to protect, and

what to do when some intrusion is suspected. To assist decision-makers

in answering such questions, we plan to extend our existing network simula-

tion/emulation testbed to create a cyber-physical system testbed by seam-

lessly integrating the following components:

• real power system hardware and software, such as PMUs, relays, data

aggregators, and control stations, and other testbed containing real

equipment, such as the smart meter testbed in the TCIPG lab

• a simulator of power generation and distribution, such as PowerWorld

[119] and Real Time Power System Simulation (RTDS) [120]

Through a combination of simulation and emulation, the testbed seam-

lessly will integrate virtual and real components, allowing for evaluation of

the effectiveness of security technology in a realistic setting, and enabling

decision-makers to observe the consequences of potential decisions in a safe

virtual environment. It will help answer questions like: What sort of se-

curity architecture best balances competing concerns of availability, safety,

and security? What impact does any given security technology have on the

operators, and on a system’s ability to keep up with real-time monitoring

requirements? How does one balance the cost of implementing and main-

taining security measures against the risk of not doing so? The following are

some examples of the potential usage of the testbed:

• Training and human-in-the-loop event analysis

• Assisting in decision-making of response mechanisms against both at-

tacks and accidents
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• Analysis of incremental deployment, and evaluation of whether or not

to adopt certain technologies

4.2.2 Software-Defined Networking-Based Architecture
Design for Traffic Management in the Smart Grid

A large number of applications with various requirements (e.g., delay, loss,

and jitter) are running concurrently in the smart grid, and the diversity of the

applications keeps increasing as more intelligence is pushed into this huge,

complex network. It is very challenging to efficiently manage all kinds of

traffic and ensure the appropriate quality of service (QoS) across multiple

smart grid applications to meet all the different timing requirements, which

range from 10 ms to 1 second (e.g., critical information, such as control

commands must be delivered on time). A proper location for investigating

traffic management is the substation routers, where all kinds of traffic (AMI,

SCADA, PMU, enterprise data, etc.) are aggregated and then communicated

to the control station(s) through the core network. The work is challenging

because (1) the huge size of the network slows down the deployment process

of any new ideas; and (2) the growing number of new features integrated

into the smart grid would require frequent revisits of many existing designs.

Therefore, we would like to investigate a software-defined networking-based

architecture design for easy deployment and efficient traffic management in

the large-scale and rapidly changing smart grid.

An SDN design decouples the data plane and the control plane of a switch

or a router. The logically centralized controller can directly configure the

packet-handling mechanisms in the underlying forwarding devices (e.g., drop,

forward, modify, or enqueue). The benefits of applying SDN in the context

of the smart grid include the following:

• The need to individually configure network devices is eliminated.

• Policies are enforced consistently across the network infrastructures, in-

cluding policies for access control, traffic engineering, quality of service,

and security.

• Functionality of the network can be defined and modified after it has

been deployed.
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• Products evolve at software speeds, rather than at standards-body

speed.

We will build and evaluate SDN-based designs using our testbed for effi-

cient traffic management on the routers in the substations, the core network,

and the control stations in the smart grid. A new paradigm of QoS for

smart grid traffic will be defined, including specific rules to classify traf-

fic into flows according to various application requirements and operational

constraints. Queuing algorithms to handle traffic from the separate flows will

be investigated with respect to the specific traffic patterns observed under

realistic operational configurations. In addition, an SDN-based design will

offer the opportunity to conduct global optimization in the centralized con-

troller for convenience, a feature that is not available in traditional smart

grid communication networks.

143



REFERENCES

[1] D. M. Nicol, D. Jin, and Y. Zheng, “S3F: The scalable simulation
framework revisited,” in Proceedings of the 2011 Winter Simulation
Conference (WSC), Phoenix, AZ, December 2011, pp. 3283–3294.

[2] Y. Zheng, D. M. Nicol, D. Jin, and N. Tanaka, “A virtual time system
for virtualization-based network emulations and simulations,” Journal
of Simulation, vol. 6, no. 3, pp. 205–213, August 2012. [Online].
Available: http://dx.doi.org/10.1057/jos.2012.12

[3] D. Jin, Y. Zheng, H. Zhu, D. Nicol, and L. Winterrowd, “Virtual time
integration of emulation and parallel simulation,” in Proceedings of the
2012 Workshop on Principles of Advanced and Distributed Simulation
(PADS), Zhangjiajie, China, July 2012, pp. 120–130.

[4] “TCIPG: Trustworthy Cyber Infrastructure for the Power Grid,” http:
//tcipg.org/, Accessed 2011.

[5] D. Jin, D. Nicol, and M. Caesar, “Efficient gigabit ethernet switch
models for large-scale simulation,” in Proceedings of the 2010 Workshop
on Principles of Advanced and Distributed Simulation (PADS), May
2010, pp. 1 –10.

[6] D. Jin and D. Nicol, “Fast simulation of background traffic through
fair queueing networks,” in Proceedings of the 2010 Winter Simulation
Conference (WSC), Baltimore, MD, December 2010, pp. 2935–2946.

[7] D. Jin and D. M. Nicol, “Parallel simulation of software defined net-
works,” in Proceedings of the 2013 ACM SIGSIM Conference on Prin-
ciples of Advanced Discrete Simulation, Montreal, Quebec, Canada,
May 2013, pp. 91–102.

[8] Y. Zheng and D. Nicol, “A virtual time system for openvz-based net-
work emulations,” in Proceedings of the 2011 Workshop on Principles
of Advanced and Distributed Simulation (PADS), 2011, pp. 1–10.

[9] D. Nicol, J. Liu, M. Liljenstam, and G. Yan, “Simulation of large scale
networks using SSF,” in Proceedings of the 2003 IEEE Winter Simu-
lation Conference, vol. 1, 2003, pp. 650–657.

144



[10] M. Liljenstam, J. Liu, D. Nicol, Y. Yuan, G. Yan, and C. Grier,
“RINSE: The real-time immersive network simulation environment for
network security exercises,” in Proceedings of the 19th Workshop on
Principles of Advanced and Distributed Simulation, 2005, pp. 119–128.

[11] P. R. Barford and L. H. Landweber, “Bench-style network research in
an internet instance laboratory,” in ITCom 2002: The Convergence of
Information Technologies and Communications. International Society
for Optics and Photonics, 2002, pp. 175–183.

[12] “PlanetLab,” http://www.planet-lab.org, Accessed 2011.

[13] “Emulab,” http://www.emulab.net, Accessed 2011.

[14] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase,
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[87] L. Piètre-Cambacédès and P. Sitbon, “Cryptographic key management
for SCADA systems-issues and perspectives,” in International Confer-
ence on Information Security and Assurance. IEEE, 2008, pp. 156–
161.

[88] C. Bowen III, T. Buennemeyer, and R. Thomas, “A plan for SCADA
security employing best practices and client puzzles to deter DoS at-
tacks,” Working Together: R&D Partnerships in Homeland Security,
2005.

[89] P. Ralston, J. Graham, and J. Hieb, “Cyber security risk assessment
for SCADA and DCS networks,” ISA Transactions, vol. 46, no. 4, pp.
583–594, 2007.

[90] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” ACM SIGCOMM Computer Communication Re-
view, vol. 34, no. 2, pp. 39–53, 2004.

[91] E. Bompard, C. Gao, R. Napoli, A. Russo, M. Masera, and A. Stefanini,
“Risk assessment of malicious attacks against power systems,” IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, vol. 39, no. 5, pp. 1074–1085, 2009.

[92] J. Fernandez and A. Fernandez, “SCADA systems: Vulnerabilities and
remediation,” Journal of Computing Sciences in Colleges, vol. 20, no. 4,
pp. 160–168, 2005.

[93] V. Igure, S. Laughter, and R. Williams, “Security issues in SCADA
networks,” Computers and Security, vol. 25, no. 7, pp. 498–506, 2006.

[94] S. Patel and Y. Yu, “Analysis of SCADA security models,” Interna-
tional Management Review, vol. 3, no. 2, 2007.

[95] A. Faruk, “Testing and exploring vulnerabilities of the applications im-
plementing DNP3 protocol,” M.S. thesis, Kungliga Tekniska högskolan,
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