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Abstract—The Gauss-Newton algorithm is a popular and
efficient centralized method for solving non-linear least squares
(NLLS) problems. In this paper, a multi-agent distributed version
of this algorithm is proposed to solve general NLLS problems in a
network, named Gossip-based Gauss-Newton (GGN) algorithm.
Furthermore, we analyze and present sufficient conditions for
its convergence and show numerically that the GGN algorithm
achieves performance comparable to the centralized algorithm,
with graceful degradation in case of network failures. More im-
portantly, the GGN algorithm provides significant performance
gains compared to other distributed first order methods.

Index Terms—Gauss-Newton, gossip, distributed, convergence

I. INTRODUCTION

Numerical algorithms for solving non-linear least squares
(NLLS) problems are well studied and understood [1]-[3].
Popular methods include the so-called Newton and Gauss-
Newton algorithms. Newton algorithms are second order meth-
ods that use the Hessian of the objective function to stabilize
and accelerate local convergence [2], [4], while Gauss-Newton
simplifies the computation of the Hessian particularly for
NLLS problems by ignoring the higher order derivatives [3].
The Gauss-Newton algorithm is commonly used for power
systems state estimation [5], localization [6], frequency esti-
mation [7], Kalman filtering [8], medical imaging [9]. Given
the fact that the data are acquired over a wide area for some
of these problems, in this paper we are interested in the
decentralized implementation of the Gauss-Newton algorithm
in a network, via gossiping. Since their introduction [10],
gossip algorithms have been extensively investigated [11],
[12], as surveyed in [13]. Deterministic and randomized proto-
cols for gossip algorithms with synchronous or asynchronous
updates have been further studied [14], [15] and applied in
different areas in networked control and distributed signal
processing, such as distributed Kalman filtering [16] or convex
optimization problems [17].

Our work is closely related with the recent developments
in the area of distributed optimization via network diffusion,
which evolved from the incremental methods in [18], [19] and
gossip-based sub-gradient algorithms in [17] onto fully decen-
tralized and randomized algorithms. The distributed algorithms
analyzed in [20]-[24] tackle convex optimization problems
through either synchronous or asynchronous communications.
These techniques combine a local descent step with a network
diffusion step. The convergence of these diffusion algorithms
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typically requires convexity and a diminishing step-size, which
results in slow convergence in general [25]. Recently, [26]
assumes local strong convexity and proposes a diffusion
optimization scheme for general convex problems by using
stochastic gradients with a constant step-size. Furthermore,
the convergence analysis of network diffusion algorithms has
also been developed for adaptive formulations using a constant
step-size for linear filtering problems [27]-[29], or using a
diminishing step-size for invertible non-linear systems [24].
Despite the simplicity of first order methods in diffusion
algorithms, they generally suffer from slow convergence in
contrast to Newton-type algorithms.

Recently, a gossip-based Newton method was derived in
[30] to solve the special case of network utility maximization
problems and later applied to power flow estimation [31].
The algorithm relies on the diagonal structure of the Hessian
matrix and its convergence is proven under the hypothesis
that the error of the computed Newton descent is bounded.
In addition, the method is developed specifically for strictly
convex problems, where furthermore the variables are com-
pletely separable for each distributed agent (i.e., its Hessian
is block diagonal), while NLLS problems are oftentimes non-
convex and non-separable. Although there have been some
ad-hoc applications of the Gauss-Newton methods via network
average consensus in sensor networks [32]-[34] or incremental
methods in acoustic sources localization [35] that relax these
assumptions, a thorough study of the algorithm performance
in the general case is still missing.

Motivated by this background, in this paper, we propose
and study the performance of the Gossip-based Gauss-Newton
(GGN) algorithm, for general NLLS problems that are non-
separable and non-convex. We also showcase its performance
in power system state estimation (PSSE) [36], [37] for sys-
tem monitoring and control. Recently, the development of
distributed PSSE schemes has received considerable attention
[38]-[47] to achieve wide area awareness in the expanding
power grid. Most of these algorithms hierarchically aggregate
the information from distributed control areas under the as-
sumption that there are redundant measurements available at
each area to uniquely identify the local state variables (i.e.,
local observability). Such condition is not required by the
GGN algorithm in this paper, similar to the recent works
in [48], [49]. In comparison, the proposed GGN algorithm
is very different in terms of the network communications
and algorithm convergence. The method in [48] is motivated
by the diffusion algorithm in [24] (similar to [20] in an
adaptive setting), which is a first order sub-gradient method.
On the other hand, our approach converges much faster and



our communication model is more flexible and robust. The
authors in [49] used the Alternating Direction Method of
Multipliers (ADMM) to distribute the state estimation pro-
cedure by decomposing the state variables in different areas
so that each agent estimates a local state. This is in contrast
to the global state considered in this paper. Furthermore,
the communications entailed by ADMM is constrained by
the power grid topology, while the communication model
considered in this paper is decoupled from the grid topology
and more flexible in terms of network reconfigurations for
random failures. Also, the numerical tests in [49] are based
exclusively on a linear model using Phasor Measurement Unit
(PMU) data, while the convergence in general is not discussed.

The challenge associated with PSSE is the presence of mul-
tiple stationary points due to the non-convexity of the NLLS
objective. This fact confirms the importance of deriving the
sufficient conditions for the convergence of the GGN, provided
in this paper. These conditions indicate how close the algo-
rithm needs to be initialized around the global minimizer in
order to converge to it. The criterion has practical implications
in the power grid application, since it can guide the design
of measurement placement (see [50]) to improve convergence
and performances. In the simulations, we show how the GGN
algorithm performs compared to the diffusion algorithms in
[48] and [24] in an adaptive setting with streaming data.

Synopsis: In Section II, we define the NLLS problems and
provide the distributed NLLS formulation in a network. Then,
the proposed GGN algorithm is described in detail in Section
IIT and its convergence analysis follows in Section IV. We
formulate the PSSE application in Section V as a NLLS prob-
lem and solve it using the proposed GGN algorithm. Finally,
the convergence and performance of the GGN algorithm is
demonstrated for PSSE in Section VI.

Notation: We denote vectors (matrices) by boldface lower-
case (upper-case) symbols, and the set of real (complex)
numbers by R (C). The magnitude of a complex number z is
denoted by |z| = v/z2*, where x* is the conjugate of x. The
transpose, conjugate transpose, and inverse of a non-singular
matrix X are denoted by X7, X and X1, respectively. The
inner product between two vectors x,y € CV*! is defined
accordingly as (x,y) = ZnN:1 Yy The W-weighted Eu-
clidean norm of a vector x is denoted by x|y, = VXH WX,
and the conventional Euclidean norm is written as ||x||. The
2-norm of a matrix A is denoted by ||A|| and the Frobenius
norm is denoted by ||A||r. Given a matrix A = [a1,-- ,an]
where a,, is a column vector, the vectorization operator is
defined as vec(A) = [af,---  a%]T. Finally. Iy is an N x N
identity matrix and 1 is an N-dimensional all 1 vector.

II. PROBLEM STATEMENT

Let x € RY be an unknown parameter vector associated
with a specific network, belonging to a compact convex set
X. The network objective is described by a vector-valued con-
tinuously differentiable function g(x) = [g1(x),--- , gar(x)]"
with M outputs, defined as g,, : RY — R, m =1,---, M.
Note that {g,, }M_, are not necessarily convex. Then, a non-

linear least squares (NLLS) problem for the network is

2. (1)

X = argmin [|g(x)
Throughout this paper, we assume the following about (1):

Assumption 1.

1) The vector function is continuous, differentiable, and
bounded for x € X with

I8 < €max- )

2) The M x N Jacobian G(x) = 0g(x)/0xT is full-
column rank for all x € X. Denote by Amin(-) and
Amax (+) the minimum and maximum eigenvalues and let

Omin — r}?elg \/)\min (GT(X)G(X))v

— T

with 0 < Omin < Omax < OQ.

3) The Jacobian G(x) satisfies the Lipschitz condition

IGx) - G| cwlx—-x|, xx €X,

where w > 0 is a Lipschitz constant.

A. Centralized Gauss-Newton Algorithm

When data and functions are available at a central point, the
Gauss-Newton method starts from some initial point x° and
solves the NLLS problem iteratively [3]

xFl = py [xk—akdk]7 k=1,2,---,

3)

where oy, is the step-size in the k-th iteration and Px[] is a
projection onto the constrained set X. According to Assump-
tion 1, the Gauss-Newton Hessian matrix GT(x*)G(x*) is
positive definite, hence the resulting d* constitutes a descent
direction of the objective function

d* = [GT(x")G(xH)] " GT (xF)g(xF), @)

where G(x) is the M x N Jacobian matrix of g(x). In this
paper, we assume that fixed points always exist for the update
(3), which corresponds to the set of the stationary points of
the cost function satisfying the first order condition

GT(x")g(x*) =0, x*eX 5

Note that if oy is chosen differently at each iteration, the
algorithm is called the damped Gauss-Newton method while
ar = « corresponds to the undamped Gauss-Newton method.
Under Assumption 1, it is well-known from [1], [3] that if the
step-size «, is chosen according to the Wolfe condition, the
Gauss-Newton iteration converges to a stationary point of the
cost function. Since many NLLS problems are non-convex by
nature, thus X is one of the many stationary points x* and the
focus in this paper is to study the local convergence property
of the algorithm to a particular fixed point X € X.

B. Distributed Formulation

Although the convergence of centralized Gauss-Newton
algorithms is well studied [3] under Assumption 1, it is not
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Fig. 1. Schematic of multi-agent computation structure.

immediately clear that similar local convergence properties can
be maintained for the decentralized version. As shown in Fig.
1, suppose there are I distributed agents, and the i-th agent
only knows a subset function g; : R — RM: from (1), i.e.

.81 (x)]" (6)

with M = 25:1 M;. In this setting, the goal is to obtain

g(x) = [g] (%),

I

~ . 2

X = arg min Elllgz(X)ll ; (7)
=

where each agent has only partial knowledge of the global
cost function. Based on Assumption 1, we have the following
results on the distributed formulation.

Corollary 1. Let Assumption 1 hold. Given that the partial
Jacobian G;(x) = 0g;(x)/0xT is a sub-matrix of the full
Jacobian G(x), then we have (cf. [51, Corollary 3.1.3])

1Gi(x) - Gi(x)| sw[x—x||, xx eX

and furthermore the following conditions (cf. [52, Theorem
12.4]) for arbitrary x,x’ € X

|G (x)gi(x) — G (x)gi(x)|| < vs lx = X'||
|G (x)Gi(x) — GT (x)Gi(¥)|| < vs |Ix — x|,

where vy > wW(€max + Omax) and Vs > 20maxw are the
associated Lipschitz constants.

In the distributed setting, it is difficult to coordinate the step-
size at different agents to satisfy the Wolfe condition [1] in a
global sense. A variable step-size is also quite inconvenient,
because of the difficulties of coordinating a change in the step-
size across a network. As a result, we study the undamped
Gauss-Newton case with a constant step-size « € (0, 1] i.e.
x T = Py [xF — adf], (®)

K2

where the exact decentralized descent is given by

df = [QT(HGED] G dgxd). O

(2 (2

According to (9), each agent requires the computation of

I
G'(x})G(x}) =Y _ GI(x})G;(x}) (10)
=1
j[
G"(xP)g(xf) =Y GT(x})g;(x}), (11)
j=1

while the ¢-th agent has only partial information available
to compute GT'(x¥)G;(xF) and GT (x¥)g;(x¥). In the next
section, we introduce the GGN algorithm.

III. GOSSIP-BASED GAUSS-NEWTON (GGN) ALGORITHM

The proposed GGN algorithm implements the update in
(4) in a fully distributed manner. There are two time scales
in the GGN algorithm, one is the time for Gauss-Newton
update and the other is the gossip exchange between every
two Gauss-Newton updates. Throughout the rest of the paper,
we consistently use update (denoted by “k”) for the Gauss-
Newton algorithm and exchange (denoted by “¢”) for the
network gossiping. All the network agents are assumed to
have a synchronous clock that determines the time instants
T, for the k-th algorithm update across the network. Between
two updates [7,7k+1), the agents exchange information via
network gossiping at time 7y € [7g, Th41) for £ =1, {y.

Next, we describe the local update model for the GGN
algorithm at each distributed agent in Section III-A, and
introduce in Section III-B the gossip model for every exchange
£ =1,--- /¢ that takes place between every two updates.

A. Local Update Model

Let x¥ be the local iterate at the i-th agent after the k-th
update. For convenience, let

1 I

a(x!) = 7 > G (xD)g; (x)), (12)
j=1
1 I

Q(x}) = 7 > G (x)Gy (). (13)
j=1

The “exact descent” in (9), if it were to be computed at the
i-th agent for the (k + 1)-th update, would be

df = Q7' (x))a(x}),

which is impossible to obtain in a distributed setting. This is
because of the fact that agent j is not aware of the iterate x¥ at
other agents ¢ # j as well as that each node only knows its own
mapping g; and G;. In fact, the available information at the i-
th agent after the k-th Gauss-Newton update is G7 (x¥)g; (xF)
and GT'(x¥)G;(xF). Therefore, we propose to use an average
surrogate for q(x¥) and Q(x¥)

(14)

I

h fl T (k. (~cF

hy, = ];Gz (Xi )gz(xi), (15)
I

H _l Tk (K

H; = I;Gi (xi)Gi(x7), (16)



which can be obtained via network gossiping.

After the k-th update by each agent at 7, the network enters
gossip exchange stage [Ty, 7x41) to compute the surrogate hy,
and H;,. Define the length-N;; local information vector (i.e.,
N3y = N(N+1)) at the i-th agent for the ¢-th gossip exchange

sl = | ol o] an
with the initial condition Hy, ;(0) given by

hy+(0) = G (x))gi(x7) (18)

Hy5(0) 2 G7 () Gal(x7). (19)

Clearly, the surrogates are the network averages of the initial
conditions hy, = Zle hy. ;(0)/1 and Hy, = Zle H, (0)/1.
Then, all the agents exchange their information Hy, ;(£) —
Hy, i (¢ + 1) under the protocol described in Section III-B.

After ¢}, exchanges, the “approximated descent” for the (k+
1)-th update at the i-th agent is

d (0) = Hig; (G i (4) (20)
and the local estimate is updated as
xi T = Py [xF — ad¥(41)] . (21)

B. Network Gossiping Model

Before describing the gossiping protocol, we first model the
data exchange between different agents. We use the insights
from [10], [20], [53] and impose some rules on the agent
communications over time. For each exchange, an agent i
communicates with its neighbor agent j during [y, T,+1). This
is captured by a time-varying network graph Gy, , = (Z, My, ¢)
during [y, Tk,e+1) for every GN update k and gossip ex-
change ¢. The node set Z = {1,---,I} refers to the set of
agents, and the edge set M, , is formed by the communication
links in that particular gossip exchange. Associated to the
graph is the adjacency matrix Ay (¢) = [AE?’Z)]IM

A0 _ {1, {i,5} € My
1] :

. (22)
0, otherwise

Assumption 2. The composite communication graph G, o =
{Z, My o0} for the k-th update is connected, where

Moo = {{i,j} :{i,j} € My for infinitely many 6}.

There exists an integer L > 1 such that' for any ¢
L-1

{’Laj} S U Mk,e-‘ré’v v {Zaj} S Mk,oo-

£'=0

(23)

With the communication model in Assumption 2, each agent
combines the information from its neighbors with certain
weights. Define a weight matrix Wy, (€) £ [W}(£)]1xr for
the network topology during [7x ¢, T ¢+1), Where the (7, j)-th
entry Wi’} (€) of the matrix W (¢) is the weight associated to
the edge {i, j }, which is non-zero if and only if {7, j} € M 4.

I'This is equivalent to the assumption that within a bounded communication
interval of L, every agent pair {¢,5} in the composite graph communicates
with each other at a frequency at least once every L network exchanges.

Assumption 3. For all k and ¢, the weight matrix W({) is
symmetric and doubly stochastic. There exists a scalar 1 with
0 < n <1 such that for all i,5 € T

1) WE() > n for all k > 0 and £ > 0.
2) WE) >nforall k>0and ¢ >0 if {i,j} € M. e
3) W) =0 forall k>0 and £ >0 if {i,j} & My

The gossip exchange of each agent is local with its neigh-
bors using this weight matrix W (¢). By stacking the local
information vectors Hy(¢) = [’Hil(ﬁ),u' ,’Hgyl(ﬁ)]T, the
exchange model can be written compactly as

Hi(f) = [Wr(0) @Iy, | Hr(£—1),

where ¢, is number of exchanges [Tk, Tg+1)-

1<l0<t, (24

The gossip exchange model under Assumption 2 and 3 is a
general model that includes time-varying network formations,
where all agents form random communication links with their
neighbors and advance their computations of the average of
all local information vectors Hj, = Zle Hy, :(0)/1. With the
prescribed communication model, we highlight the following
two special cases which are often analyzed in consensus and
gossiping literature [10], [13], [15], [17].

1) Coordinated Static Exchange (CSE) [13], [17]: In the
CSE protocol, each agent combines the information from
possible multiple neighbors, determined by the communication
network A, with a static weight matrix W for all updates and
exchanges at 73, s € [7g, Ti11) for £ =1, - £} In particular,
if the network is fully connected such that A =1; — 1 11?,
the communication interval is simply L = 1 in which each
agent talks to everybody in every exchange. There are multiple
ways to choose the weight matrix in the CSE protocol, where
one of the most popular choice is constructed according to
the Laplacian L = diag(Al;) — A as W = I; — wL with
w = [/ max(Aly) for some 0 < 3 < 1.

2) Uncoordinated Random Exchange (URE) [15]: For
each exchange in the URE protocol during [7%,7g+1), @
random agent ¢ wakes up and chooses a neighbor agent j
at random to communicate. Suppose agent [Ij , wakes up at
Tke € [Tk, Th+1) and Jy o is the node picked by node Iy ,
with probability vy, ,. s, ,- Then given some mixing parameter
0 < B < 1, the weight matrix at this time is

Wk(‘g) =1-p (elk,z + e-]k,e) (elk,[ + e-fk,z)Tv

where e; is the /-dimensional canonical basis vector with 1 at
the ¢-th entry and 0 otherwise. Note that the URE protocol does
not necessarily satisfy Assumption 2, nevertheless numerical
simulations indicate that its performance degrade moderately
compared to the CSE protocol.

(25)

Lemma 1. [20, Proposition 1] Let Assumption 2 and 3 hold.
Given the minimum non-trivial weight 1 in Assumption 3, the
entries of the matrix product HE’:O W (¢') converge with a
geometric rate uniformly for all i,5 € T and k

¢
1 L+npLoy
No— o< (L
LI_IOWICM)] I (1_77L°>/\177

j

(26)



Algorithm 1 Gossip-based Gauss-Newton (GGN) Algorithm

given initial variables x{ at all agents i € 7.
set k= 0.
repeat
set k=k+ 1.
initialization: For i € Z, each agent ¢ evaluates (18)
and constructs My ;(0) as (17);
6: network gossiping: Each agent i exchanges informa-
tion with neighbors via network gossiping as (24).
7. local update: For ¢ € Z, each agent ¢ updates its local
variables as (21) and (20).
8: until ||Xf+1 — xf” <eork=K.
9: set the local estimate as X; = x*.

noR e

with Lo = (I — 1)L and

Ay = (1= nto)/Eo € (0,1). 27)

It is clear from Lemma 1 that the limit of the weight matrix
product exists lim TTo—o Wi(€)) = 151% /T and thus
— 00

I
) 1
i M) = 1 M0, k=L @9

which asymptotically leads to Zlim dk () = H;lhk.
— 00

IV. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of the GGN
algorithm (summarized in Algorithm 1) by examining the
recursion in (21). Note that the error made in the local descent
(20) compared with the exact descent (14) stems from two
sources, including the gossiping error resulting from a finite
¢, and the mismatch error by using the surrogates h;, and Hj,
instead of the exact quantities. In the following, we analyze the
effect of this error in the convergence of the GGN algorithm.

A. Perturbed Recursion Analysis

At the (k+1)-th update, the error between the local estimate
Xf“ and a fixed point in (5) satisfies the following recursion.

Lemma 2. Let X be a compact convex set and Assumption 1
hold. The error ||x¥™' — || between the local iterate x¥ at
each update (21) and the global solution X in (5) satisfies the
following recursion

sk~ %] 9)
< Ty ||k = || + 21 [ — =[] + alldf (¢) - dl]]
where
T2 g 2 [g(®)] (30)
T2 (1-a) Z‘:‘:: n \/5:;’ Emin 31)
Proof: See Appendix A. o n

The error recursion is a perturbed version of the central-
ized recursion. The discrepancy between the distributed and

centralized update is ||d¥(¢;) — d¥|, and its convergence is
analyzed in the following theorem.

Theorem 1. (Convergence with Bounded Perturbation) Let
Assumption 1 hold and X be a compact convex set. Given a
step-size chosen as

max{l 3““““,0} <a<i1 (32)
Umax
and the condition
ol Oma:
Wemin < —20 13 _ (1 — )22 33
\/50( |: ( ) O—min} ( )
we define the following
1—-T5) — /(1 —T%)? — 4aT:
Pmin = ( 2) \/( 2) er (34)
2Ty
1-T 1—1T%)2 — 4aT;
Pmax = ( 2) * \/( 2) i (35)
2Ty
where k is a bounded perturbation with
(1 —Ty)?
—_ 36
0<k< T, (36)

If the ||d¥(¢) — d¥|| < k is bounded for all k and i € T,
then given any x9 that falls within the puyax-neighborhood of
xeX

(37)

0 ~
Hxi - XH < Pmax;

k+1

)

the asymptotic error of the local iterate x
with respect to X can be bounded as

at each agent

lim sup fo“ — 2” < Pmin- (38)
k—oo
Proof: See Appendix B. [ ]

An intuition that can be drawn from the sufficient condition
is that the smaller is the Lipschitz constant w, the larger is
the region of convergence around the global solution X one
can start with. In other words, the smoother the cost function
the better the convergence. If €n;, in (30) is small (e.g.,
the fixed point is the minimizer X in (7)), then by letting
a = 1 and assuming k — 0, we have ppax = 20min/w — K
and the steady error is approximately pni, ~ x with finite
iterations, which scales with the gossiping error. Furthermore,
when €,;, = 0 the convergence rate is quadratic, same as
the Newton’s method. Finally, when « = 0, the result reduces
to the centralized Gauss-Newton algorithm since there is no
perturbation.

B. Perturbation Analysis of k

If the perturbation « is bounded, Theorem 1 is sufficient to
guarantee convergence of the GGN algorithm. In the follow-
ing, we analyze this perturbation and show that the bounded
condition holds.

1) Gossiping error: Define at the /-th exchange
Hk(g) £ [H£1(€)7 t »Hg,f(g)}T



and their deviations from the exact averages h;, and Hy, as
ek(g) = [851(5)7 e aeg,l(g)]Ta
Ei(0) = [Ex,(0), - Ef (O],

where ey, ;({) = h;m-(é)fl_lk and Ey, ;(¢) = Hy. ;(¢)—Hy. The

gossip errors ey (f) and Ey(¢y) are related to the properties
of the weight matrices W (¢) in Lemma 1.

Lemma 3. Let Assumption 2 and 3 hold. The gossip error
er(lr) and By (L) after the k-th update can be bounded as

lex(fr)|| < CALE,  |Ek(Ce)]l» < CALE,

where
A 1+ 777LU
C= 2Io'max \/I(E?nax + NUIQIlaX) <1_77L0 . (39)
Proof: See Appendix C. ]

2) Mismatch of surrogates: Define the errors between the
surrogate hy,, Hj, and exact quantities q(x¥) and Q(x¥) as

I
_ 1
sk = hy —q(xF) = 7 [hyi(€) — hy ;(0)] (40)
j=1
1 I
Sk =Hy — Q(x}) = 7 > [H i (0) — Hy 5(0)],
j=1
which thus leads to
hyi(0) = a(x}) + sk + exi(0), (41)
H; . (0) = Q(xF) + Ski + Ex(0). (42)
By (40) and Corollary 1, we have
I
Vs )
lIsk.il| < N Z fo - X?H 43)
j=1
Vg !
Skl < T x5 — x5 (44)
j=1

Clearly, this discrepancy depends on the disagreement
||xiC - xé‘f' || for each pair of i-th and j-th agents, characterized
by the mismatch Sy, ; and s, ; which originates from the gossip
errors Ey ;(¢) and ey ;(¢;). Having analyzed the gossip
error dynamics in Lemma 3, in the following we bound the
.

disagreement ||x} — x*

Assumption 4. Denote by i, = ming{{y} the minimum
exchange. We assume that {{},}3°, are chosen to satisfy*

K
A 1 (L —Lmin)
Ao & lim ;O)\nk < 0.

For any & € (0,1/2), the number £y, is chosen as

_ £
Crpin = {log <4D) / log )‘n—‘
D £ CCQ(V)\OOC1CQ + ].)

(45)

(40)

2 A simple choice is £g = lpnin and £, = £j,_1+1, then Aoy = 1/(1—=Xy).

where C, \,, are defined in (39) (27), v = max{v,,vs} and

max*max I
Clé2<1+0d264>’ Cy= ——

ag

(47)

With €max, Omin aNd Omax given by Assumption 1.

Lemma 4. Let the minimum exchange (i, be chosen based
on an arbitrary value & € (0,1/2) using (45). According to
Lemma 1 under Assumption 1, 2, 3 and 4, then if the initializer
is the same for all agents x9 = x°, the deviation HXZK —xX ||

J
for any i and j at the K-th update satisfies

cc.C
-l < ¢ (952

where C' is the gossip error scale in (39), C1,Cy are defined
in (47) and A, is the gossip convergence rate in (27). Based
on Assumption 4, this implies

K-1

k=0

(48)

K-1
%/ = x| <4CCiCp Y A
k=0
Proof: See Appendix D. [ ]

Theorem 2. Under Assumption 1, 2, 3 and 4, Given Lemma
1, 3 and 4, the discrepancy between the inexact and the exact
descent is bounded for all i and k

|} (6x) —df|| < & (49)

by the finite perturbation k = 4C1D)\7(7£‘“‘“+1), whose mag-
nitude vanishes exponentially with respect to the minimum
number of gossip exchanges limy_, oo Kk = 0.

Proof: See Appendix E. [ ]
Theorem 1 and 2 indicate that if the exchanges /;’s are
large, then x — 0 and the recursion approaches the centralized
version. Note that Theorem 1 and 2 are proven using very
pessimistic bounds. In Section VI the numerical results show
the algorithm behaves well even with link failures, in spite of
not meeting all the conditions and assumption stated.

V. APPLICATION : POWER SYSTEM STATE ESTIMATION

A power network is characterized by vertices (called buses)
representing simple interconnections, generators or loads, de-
noted by the set N' = {1,---, N}. Transmission lines con-
necting these buses constitute the power grid topology, denoted
by the edge set £ with cardinality |£| = L. The electrical pa-
rameters of the grid are characterized by the admittance matrix
Y = [-Y.m|nxn, where Y, = G +iBrm, {n,m} € £is
the line admittance, and the shunt admittance Y,,,,, = Gpm +
iB,,n associated with the II-model® of each transmission line
{n,m} € & Note that Yy, = =3, (Yom + Youm) is
defined as the self-admittance. The state of the power system
corresponds to the voltage phasors at all buses, described by
the voltage phase and magnitude x = [@7,VT]|T, where
© = [01,---,0x]7 is the phase vector with #; being the slack
bus phase, and V £ [Vi,---, Vy]” contains the magnitude.

3The IT-model is a circuit equivalent of a transmission line by abstracting
two electric buses as a two-port network in the shape of a IT connection [54].
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A. Power Measurement Models

Power measurements include the active/reactive power in-
jection (P,,Q,) for buses n € N, and the active/reactive
power flows (Ppm,Qnm) on transmission lines (n,m) € £.
The ensemble of these quantities can be stacked into the
length-2N power injection vector f7(x), as well as the length-
4L line flow vector f7(x) respectively

fr(x) = [P1(x),- -+, Pn(x),Q1(x), -, Qn(x)]"  (50)
fr(x) = L..’}%”n(x)“..y...’(Qnm(x)f..]Ty (51)

which can be expressed in relation to the state x as in [54]

N
X) =V, > V(G

nm €08 O + B sin O,,,)

m#n
N
=V, Z Vi (G 80 0,0, — B €08 0
m#n
Pom(x) = V2Grm — Vi Vin (Grum €08 Oy, + B 8in 0,1
Qnm (X) = _VnQBn'm - antrn (Gnm SiIl 6”771 - Bn'm CcOos enm)

where 0,,,,, = 0,, — 6,,,. By stacking the power flow equations
and the measurements into vectors f(x) £ [fZ(x), fZ(x)]”
and z £ [zT, z7]7, the measurement ensemble in the presence

of measurement error € = [eX, eL]T is
z=1f(X)+e

AT, 7T

aeNv‘/lv"' 7VN]

(52)

where % = [01,- - is the true state.

B. Formulation and Solution for the PSSE

A reasonable abstraction of the data acquisition architecture
in power systems is as an interconnected multi-site infrastruc-
ture, with [ sites in which the i-th site covers a subset of buses
n € N satisfying V; \N; = @ and N;,N; C N (Fig. 2).
The i-th site temporally aligns and aggregates a snapshot of
M; local measurements of {z; ,,}i | within the site or on
the lines that connect its own site with others. The ¢-th site’s
measurements are selected from the ensemble in (52) as

zZ;, = TiZ = fZ(X) + TiE, (53)

where f;(x) £ T;f(x), and T; £ diag[T; 7, T; 7] is a block
diagonal binary matrix selecting the corresponding measure-
ments at the i-th site. Specifically, T;7 € {0,1}Mizx2N
and T; 7 € {0,1}Mi7>4L are selection matrices with each
row having only one “1” entry located at the index of the
corresponding element in f(x) measured by field devices.
The number of measurements recorded by each agent is
M; = Mi,I + Ml',]: = TI‘(T?TZ)

The universally accepted problem formulation for static
state estimation is to solve a weighted NLLS problem that
fits the estimated state to the power measurements [36], [37].
Assuming E{ee”} = 021, the state is estimated as

xeX Z HZZ N l

where X {0n € [—Omax; Omax), Vo € [0, Vinax),n € N'}
with 6.« and Vi,.x being the phase angle and voltage limit.
By letting g;(x) = z; —f;(x) and G;(x) = —0f;(x)/0xT, the
problem can be solved using the proposed GGN algorithm.

(54)

In many practical scenarios [24], [27]-[29], many similar
NLLS problems in a network take the form

ZHZz ~ £

where z;[t] € RM is a snapshot of measurements taken at
agent ¢ at time ¢. In this scenario, the GGN algorithm can be
readily applied to track the state by initializing x?[¢] with the
previous local estimate X;[t]. In the following, we show the
performance of the GGN algorithm in estimating and tracking
the state of power systems using real-time measurements.

= min x)|1?, (55)

xeX

VI. NUMERICAL RESULTS

In this section, we compare the GGN algorithm cost in (54)
and Mean Square Error (MSE) with that of the algorithms [48].
We also show numerically that the GGN algorithm can process

measurements adaptively and compare it agamst the method
) ptk)

in [24]. Given the distributed estimates { i 0in ) at each
update in each area from v¥ = [--- ,é;(kn), cee Vz(z) 17, the
local MSE relative to V},’s and 6,,’s is
N
MSEY;) = E {Z(‘Zfﬁ? - Vn)z} /N (56
n=1
N —
MSES), = E {Z(é(’jf - 9n)2} /N. (57)
n=1

We considered the IEEE-30 bus (N 30) model in
MATPOWER 4.0. The initialization for the state is 1 for the
voltage magnitude and O for the phase. We take one snapshot
of the load profile from the UK National Grid load curve from
[55] and scale the base load from MATPOWER on the load
buses. Then we run the Optimal Power Flow (OPF) program
to determine the generation dispatch for that snapshot. This
gives us the true state X and f(X) in per unit (p.u.) values.
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A. Comparison with Diffusion Algorithms under CSE Protocol

Here we evaluate the performance of the GGN algorithm
against the diffusion algorithm for PSSE in [48], and its
extension to adaptive processing in [24]. To make a fair
comparison in terms of communication costs and accuracy,
we exploit the CSE protocol used in [24], [48] for our
method, where the exchange is coordinated and synchronous.
Measurements {z;}/_, by are generated adding independent
Gaussian errors €;,, ~ N(0,0%) with 02 = 1075. For
simplicity, we divide the system into I = 3 sites as in Fig.
2 and the communication graph is fully connected, giving
an adjacency matrix A = 1;17 — I. The weight matrix is
constructed according to the Laplacian L = diag(Al;) — A
as W = Iy — wL with w = 3/ max(Al;) and 8 = 0.3.
The step-size is aggn = 0.5 for the GGN algorithm while
agitre = 0.01071,0.3¢71,0.5¢71, 071 for [24], [48]. The
network diffusion algorithm takes place at each exchange /,
while the GGN algorithm runs ¢ = ¢y = ,;,, = 3 exchanges
for each update. Therefore, the equivalent exchange index /
in the the figure for the diffusion algorithm is ¢ = Zszl Ly,
ater the K'-th updates, where K = 1,--- ,3000.

1) Estimation on Static Measurements: In this subsection,
we show the comparison between our approach and that in
[48] over 900 exchanges overall. In particular, the comparison
is on the global objective (54) evaluated with local estimates

I
Valy = ||z — £(x5)|” (58)
i=1
and the following term to evaluate the optimality in (5)
I
Grady, = Z |G (%) (z: — £i(x))]|- (59

i=1
which are plotted against the total number of gossip exchanges
so that the comparison is performed on the same time scale.

Clearly, the GGN algorithm converges much faster since
it reaches the steady state error after £ = 10 updates (i.e.,
k?min = 30 exchanges). It is observed in Fig. 3(a) to 3(b) that
although the gossip exchange per update £y,;, = 3 is small and
does not satisfy Assumption 4, both Val, and the Grady, still
decrease exponentially as the iterations progress. On the other
hand, the objective value and the gradient norm of the diffusion
algorithm in [48] decrease slowly. Furthermore, the update
of diffusion algorithms exhibit more fluctuations especially
in the beginning, while the GGN algorithm conditions the
gradient by the GN Hessian and therefore the update tends to
be smooth and continues to lie in the proximity of the desired
solution with high accuracy. Furthermore, the performances
of the diffusion algorithm are sensitive to the step-size auif ¢,
since ouier,e = 0.014 —1 is better initially due to less fluctuations
as a result of the small step-size, while 0.3/~! gradually
outperforms 0.01¢~! due to the progress made by the larger
step-size. However, when the step-size continues to increase,
the performance starts to deteriorate from agifr ¢ = 0.5~ to
¢!, and even diverges beyond a certain value.

2) Estimation via Adaptive Processing: Here we show
numerically the applicability of the GGN algorithm to adaptive
processing as described in (55) against the method proposed
in [24] with the same network setting and step-sizes. Further-
more, we compare the global MSE performance of the GGN
algorithm against the diffusion algorithm, given by

(60)

i

I I
1 1
MSE{ = 72 MSE("), MSEJ = 72 MSES)
i=1 i=1

We generate 3 snapshots of measurements {z;[t]}_; for
t = 1,---,3 based on the same state X[t] = X by adding
independent Gaussian noise with variance o2 = 1075, similar
to the adaptive setting considered in [24]. More specifically, we
use {pin = 3 gossip exchanges between every two algorithm
updates until £ = 10, thus leading to a total number of 30
exchanges per snapshot. It can be seen from Fig. 4(a) to 4(c)
that the proposed GGN algorithm tracks the state accurately
when new measurements stream in, where the spikes observed
in the plots are caused by the new measurements. Since the
number of gossip exchanges is limited, the diffusion algorithm
in [48] and [24] convergence slowly and fail to track the state.
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B. MSE Performance under URE Protocol with Link Failures

In this section, we examine the MSE performance of the
GGN algorithm under the URE protocol with a fixed number
of algorithm updates K = 40. The performance is evaluated
with a demanding setting, where we divide the /N-bus system
into I = N sites and each site only communicates with each of
its neighbors 10 times on average. The network-wide commu-
nication volume in this scenario is on the order of the network
diameter O(N), which implies the number of transmissions
in the centralized scheme as if the local measurements are

relayed and routed through the entire network. For simplicity,
we simulate that at each exchange, the i-th distributed agents
wakes up with uniform probability 1/I and picks a neighbor
with equal probability 1/1.

In order to show the robustness of the proposed algorithm,
we examine the performance of the GGN algorithm for
cases with random link failures, where any established link
{i,j} € M fails with probability p = 0.3 independently.
It is clear that this communication model with link failures
may not satisfy Assumption 2, but it is shown below that



our approach is robust to the random setting and degrades
gracefully with the probability of failures. In Fig. 5, we track
both the individual objective Val™ = |lz; — £(x)]? a
well as the individual MSEV and MSE( ) defined in (56)
and (57). It can be observed from the ﬁgure that the MSE
curves of state estimates of different sites are highly consistent
and they all converge asymptotically when there is no link
failures. Similar behaviors can be observed for the case with
random link failures, where the local estimate at each site
is not in perfect consistence with the others, but the accuracy
remains satisfactory compared to the perfect case and degrades
gracefully with the probability of link failures.

VII. CONCLUSIONS

In this paper, we study the convergence and performance
of the GGN algorithm and discuss its application in power
system state estimation. The numerical results suggest that
that the proposed algorithm leads to accurate state estimates
across the distributed areas, is robust to link/node failures, with
polinomial communication and computation cost.

VIII. ACKNOWLEDGEMENTS

We wish to thank the Associate Editor the anonymous Re-
viewers for their comments. Their suggestions helped improve
this article significantly.

APPENDIX A
PROOF OF LEMMA 2

To study the convergence of the GGN algorithm, we exam-
ine the update in (21) and re-write it with respect to the exact
descent d¥ in (14)

X4 = P [t - adf o (af - di@)]. 6

By subtracting the fixed point X and using the non-expansive
property of the operator Px(-) on the closed convex set X, we
have the following recursion

fo“ ﬁ—adf” +05Hd,l;(£k)

— %] < [ - —di|.

For convenience, we denote G'(-) as the pseudo-inverse of
G(-). For any fixed point X € X in (5) such that GT(X)g(X) =
0, the first term can be equivalently written by substituting (9)
as follows

xF - —adF =xF -x (62)

— oGl (x)g(x}) + oG (X)g(%).
Using (4) together with the invertibility condition of G(x)

over x € X in Assumption 1, we have

xF %= GT(xf)G(Xf) (xf - ﬁ) .

(3

(63)

Then by substituting (63) into (62), and meanwhile adding and
subtracting simultaneously a term o GT(x¥)g(X), we have the
following expression

k

X; — X — ozdi'c (64)
= G'(x}) [G(x]) (%} — %) — ag(x}) + g(xX)]  (65)
+a [GI(%) - G'(x})] g(®). (66)

The expression in the first term can be re-written with the
mean-value theorem as follows

ag(x) — ag(x) - G(x)(X - x) (67)

—a Uol G(x+ H(% — x))(% x)dt] CGE)(E - x)

=a(/WG@+ﬂ£—w>—G@n&—me
- . a)G(x)(X = x),
whose norm can be bounded by using Assumption 1 as
Gx)(x —x)|

ag(X) — ag(x) — (63)

1
<a [/0 IG(x+t(x —x)) = G(x)]| dt} I = x|
+ (1 = @) omax Ix — X[ -

From the Lipschitz condition in Assumption 1, we have

/O 1G(x + H(% — %)) — G| dt < w [x — K| /0 bt

Thus, if condition (3) of Assumption 1 holds, we have

lag(%) - ag(x) - GG~ )| (69)
< 5 =R + (1= @)oma [x — %,
and finally according to [56, Lemma 1], we have
IGT(x) - GT®)| < V2|GT ) |GT®)IIG(x) — GR)|
< Y2 (70)
By definition we have ||GT(z)||? = | (C‘:T(:B)G(ac))f1 II-

Also Assumption 1 implies HGT( N < 1/0min.
For convenience, we let enin = ||g(X)]| be the goodness of
fit at X and define the following constants
aw A

Omax 2O“-‘-)emin
Ty (1= g Tmex | Y20Emin

Omin g

T, = (71)

2Jmin min
Then, substituting ||GT(x)|| < 1/0min, (69) and (70) back into
(64) and using (30), we have

ok =% — ad}]| < T xt %" + 12|

Therefore, we have the error recursion (29).

APPENDIX B
PROOF OF THEOREM 1

If the discrepancy error is upper bounded by a constant
> 0 such that ||d¥(¢;) — d¥|| < , then from Lemma 2, the
recursion can be simplified as

ekt = < T ok = x| T [ — ]| 4 .

(72)

the error recursion can be expressed as a dynamical system as

Cikr1 < T1<i2,k + TG, +ar, G > 0. (73)



Since (; ) is non-negative, this error dynamic can be upper
bounded by the dynamical system of ppi1 = 1(pg) with

Y(pk) pr > 0,

whose equilibrium points are obtained by solving

= Tip; + Top + ax, (74)

p= Tip? + Top + ack. (75)

When & satisfies

(1—Ty)? — 4aTik > 0, (76)

the equilibrium points of (75) exist and are obtained as (34).

Now let 9)(p) £ dip(p)/dp be the first order derivative
of the dynamics. According to [57, cf. Proposition 1.9], an
equilibrium point is a stable sink if [¢)(-)] < 1 and unstable
otherwise. Thus, the equilibrium point py .« is unstable since
the following is always true

[ (max)| = 12T e + T3 (77)
- ‘1+\/(1—T2)2—4aT1f<;’ >1,  (78)
while the point ppiy, is a sink if
‘zb(pmm) — - /O-T)2- 4aT1/<;‘ <1. (719
To guarantee ‘w(pmin) < 1, it requires
0< (1-T)2— 40Tk < 4, (80)

which together with (76) leads to the following condition on
the bounded perturbation x

T2 — 2T, — 3 T2 — 2Ty +1
4T 40Ty .

Clearly, given an arbitrary « € (0, 1], the lower bound on & is
unrealistic if 75 — 275 — 3 > 0 since the lower bound could
approach infinity as « — 0. Therefore, to ensure convergence
with an arbitrarily small perturbation, it is sufficient to have

81)

T? 2T, —3< 0= —1<T, < 3. (82)
Since T, > 0 by definition (30), the condition becomes
max 2 min
0<(1-a)? +fo‘2w€ <3. (83)
Omin O min

By re-arranging the terms, this condition is equivalent to

2 min max
7‘[0‘;"6 <3—(1—q)lmx
Oihin . Omin (84)
3—(1-a)™= >0
Omin
which can be simplified as
weIIllIl < nnn |:3 (1 - Oé) Umax:|
\[30_04 Omin (85)
max{l — mm,O} <a<l
UH]&X

Thus, if the initial error (; o > pmax, the error keeps growing.
On the other hand, if the errors are bounded by 0 < (;; <
Pmax for all 2’s and k’s, the algorithm reaches the equilibrium

error floor pmin. Thus, as long as the initialization error (; o
satisfies 0 < (50 < Pmax for ¢ = 1,--- I, the algorithm
progresses with contracting error until reaching the error floor
Pmin due to the constant bounded perturbation k.

As a result, as long as the initial condition xg satisfies
[|%? — x*|| < pmax Wwith respect to a certain fixed point x*,
the error norm is upper bounded by

lim sup ||xiC - X*H < Pmin-
k—o0
APPENDIX C
PROOF OF LEMMA 3
Using (24), we evaluate the deviation of H(¢) from the
average H; = [17® INH} H;(0)/I for a finite ¢. By
subtracting the average H;, on both sides of (24), we have

Hy.(0) — Hy,

1I8y1T 91
Mﬂkm)

=[Wi(0) @ In, | Hr({—1) — 7

1n1% @1
= [H W (¢) @ I, | Hi(0) — wﬂk(o)
=0
1y1
_ KHW () — =X N) @ In,, | Hi(0).

Then, we bound the norms of the above equation as

4
[IRG)

£'=0

1N1

H(0) — | < [H:0)] . (86)

Using Lemma 1 and the norm inequality ||-|| < ||-|| -, we have

¢ T
1y1

[IRGE NI =

=0 F

{QI (H_”WL) /\ﬁ} 1H5,(0)]) -

The quantity ||H(0)] is by definition (17) determined as

lehkz +Z|\sz )l
- z (G ocbrei(xt)

<IU

[ Mk (6) = Ha| < | (0)]

[[ M5 (0

I” + | GT (x})Gi(x

9l7)

+ No 87)

max( max max)

where the norm inequality is used

IGT (x0)Gi(x)I[F < NIGT ()G (x)[I3 = Nopay-

Letting C = 21/Io2 + Nogax) 1;777;0

error is bounded as || Hy,(¢) — Hy|| < CX,.
By definition of ey, ;(¢) and Ey ;(¢), we have
ehl(ﬁ)
vec [Eg. 1(4)]
Hk(f) - 'f(k = s

ekyl(ﬁ)
vec [Eky[(g)]

, then the

m '].X Il’l ax

(88)



and hence the norm of each component is bounded by the total
norm ||ex(€)]| < C’/\f; and ||E(0)||p < C’/\f;.

APPENDIX D
PROOF OF LEMMA 4

We prove this result by mathematical induction. We will
repetitively use matrix expansion [51] for any Z and §Z,

(Z+62)"' =) (-1)7(z7'6z)"z"" (89)
q=0
as long as || Z710Z| < 1
A. Initial Case: k =1
Given x? = xY for all 4, then for any i # j we have
i = x| < [|d7 (bo) — d5(60)]], (90)

where the discrepancy is expressed explicitly as
d2(¢o) — d(¢o) = [Ho + Eoi(¢0)] ™ [ho + 0. (0)]
— [Ho + Eo(00)] " [Bo +e0,(4)]

Thus, if Eg ;(¢), Eo,;(fo) are small enough, the expansion in
(89) can be applied here to simplify the expression.

1) Matrix series expansion: Since x9 = x° for all i such

that Hy = Q(xY) and hy = q(x?), they can be bounded based
on Assumption 1 as follows
[[hol| = flaG<d)]
= 2 ]|GT (D] < T,
1| = Q™ x|
—1|(e"xDeEn) | < L o

Note that from the norm inequality of sub-matrices

HI?I(TlEO,z'(go)H < HI?I(TH [Eo,i (4o)]| < ||f151|| [Eo(4o)l

[ Hy "Eo; (4o)|| < [[Hg || IBo.; (4o) |l < [[HG || Eo ()]l »

and by Assumption 4 we have ¢y > ¢,,;,. From Lemma 3 and

Assumption 4, the above inequalities can be bounded as

1 e
—

Lmin
)\71 .

92)

5 | o (o)l < fo — p(fo—tu)

min min

Choosing /iy according to (45), we have AE,EO*Z‘“‘“) < 1and

f Ic Linin IC
Lrnin >log< /log A, = UIan/\,7 < 40§11an.
For notation convenience, we define
~ e
= - 93
§= 2 56 ©3)

and clearly, we have 0 < 5 < & < 1/2 according to the
definition of D in (45) by Assumption 4. Therefore, letting
0Z = Ey({y) and Z = Hy,, it follows from Lemma 3 that

_ 1 ~
127152 = | F | [Bo(to) | < A€ < 5. (94)

oo\H

and the expansion holds. By the matrix series expansion and
grouping all the high order terms g > 1, we have

d?(¢o) — dj(fo)

) [H 3 (B B () B

q=1

95)

[Bo + 6071(60)]

- [ﬂo_l - i(—l)q (F5 " Eo (L))" Hy ' | [ho + eo ;(4o)] -

g=1

To simplify the above expression, we write it in three terms
D;(4y), D2(¢y) and D3 (¢y) as follows

d(¢o) — d) (o) = D1(fo) + Da(lo) + Ds(¢o),

where Dl(go) £ I:Ial [eoﬁi(fo) —€o,5 (fo)] and

D, (6o) 2> (—1)¢ (Hy "Eo ;(¢))" Hy 'ho

— Z(*l)q (I:I(TlEoyi(ﬁo))q 1:1618071'(60).

q=

—_

2) Proof of success when k = 1: According to the triangu-
lar inequality for norms, we can bound

lleo,i (o) — €0, (€o)|l < 2leo(fo)ll
Eo.i(fo) — Eo,; (o) < 2 Eo(fo)| 5 -

Using (94), we can bound the norm of the first term as

_ 1~ e
D1 (6o)|| < 2[[Hg || leo(to)] < 56/\5,50 fmin) - (96)

Similarly, the infinite sum in the second term is bounded as

oo

> (=1 [(ﬁEIEo,j(fo))q -

g=1

< zz ([ | 1o (£0) )

Z ( é‘)\(éo [mm )q — }

(ﬁglEo,i(éo))q}

gA%ZO*fmin)
Zy (Lo—Lmin) )’
1= 3o tmm))
where the last equality comes from the convergence of geo-

metric series lim g, o Zk La* =a/(1—a) for any |a| < 1.
Since 0 < § < &< 1/2 and )\(e“ fmin) < 1, then

o7

Gt
(1 1)

and thus the norm of the second term is bounded as

D2 ()| < EXo~=in) || Hg || || o |

Omax€max * Lo—Cmin
< T o)

< 25}\7(760_émin) (98)

— 2
O min



where the last inequality comes from (91).

Following the same rationale, the norm of the third term
can be bounded as

IDs (o) Z LG 1o (o)l ) (|G eo (4o |

o0
— +1
Z | o (£0)] ) (99)
which leads to

q+1

D5 (%)l < 22 ( EAlfo~ f‘“‘“) (100)
(ZO ‘gmin)

1-

& —EA[fo~tmin) —(101)

NaEEEDE
-0 o
< 55}6]&] émm) .

where the last inequality has used the results in (98). Note that
this bound is very loose since we bound a second order term
with the first order term.

Substituting E=1C¢ /(02 D) defined in (93) back to (96),
(97), (100) and summing them up, we have

Hd?(EO) 7d?(£0)|| § <]_ 4 Uma;;Emax) 0_

min

e
D

min

é’ (50 Limin)

Introducing the constants C; and Cy defined in (47) and the
inequality in (90), we have

cc,C
=i —xj|| <¢ (52> )\%éo—émm).

and therefore the result holds for &k = 1.

(102)

B. Induction: k = K and k = K + 1

Let the error bound hold for £ = K such that for any ¢ # j

K
I =t < 6 (CGE) 3 agetom.

k=0

(103)

with C1, Co given in (47). The inequality below holds

i = < [l = x|+ [l () — a5 )

where

dX (0x) — a¥ (tx) = [Hi + Exi(0x)] " [hx + exi(lx)]

— [Hx + Ex;(lx)]”
(104)

Similar to the case when k = 1, if the perturbations Ex ;((k ),
Ek ;(¢x) are small enough, the expansion in (89) can be
applied here to simplify the expression.

1) Matrix series expansion: By definition (40), we have

1

A = || @tk + Sk~

; (105)

which is another perturbed inverse. Thus we first examine
whether this inverse can be expanded using the series expan-

! [BK “re[{’j(([()] .

sion in (89). From (43) and (103), we have

CCLCy Y\ & .
||SK,Z‘ < gt ( 5 2> Z}\’Ef}g—‘emm) (106)
k=0
<¢ (”5051@) - (107)

where the last inequality comes from the non-negativity of
Ay (e Moo > STE ASETEm) for all finite K). By the
definition of D in (45) in Assumption 4, we have

Q7" (xSl < [|Q7 (x| Sl

I (vsCC,C.
- (SDl 2))\005<§<1/27

min

IA

(108)

IN

g

<1, from (45)

where we have used the fact that HQ H <1/o2,, (see
(91)). Therefore, the matrix series expansmn holds for (105).
Then using the above calculations, we have

[H < [lQ~ ) (109)
+Z(||Q*1 OISkl Q)
<5 ¢
O—mlIl rmn qzl
_ L e N _ L1 21
_UIQnin< +1_£)_0—12nin1_§<0—r2nin.

Similar to the case with k = 1, we have
[HE Exi(Cr)|| < [HE| Exi ()] < HP:I?QH IEx(Cr)ll
|H B (0)|| < [ HE | 1Ex ()l < [ HE | 1B (x5 -

From Lemma 3 and Assumption 4, the above bound can be
further bounded using (109) as

IC
H | |Ex( < —CVK AL —bmin) .
H H H K ® HF mm 2O—mng
For notation convenience, we again let £ = 1C¢/(02;, D) in

(93) with £ < € < 1/2 and let 6Z = Ex ;({x) or Ex ;((x)

and Z = Hy. As a result, we have
1271 02| = [[FE | 1B (£ | (110)
1 - 1
< iAng*Zmiﬂg <3 (111)

Therefore, the matrix expansion holds. By grouping all the
high order terms ¢ > 1 in the matrix expansion, we have

df () — df(fK)

Mg

(_1)q (IjI;(IEK’Z‘(EK))q I:IK1‘| [BK + eK,i(ZK)}

Il
-

NE

s

K (=1)7 (Hz?lEK,j(fK))qu(l] [hx +ex,;(lx)] -

1



To simplify the above expression, we write it in three terms
D;({k), Do(¢x) and D3({k) as follows

df (¢x) — dX(¢x) = D1(lk) + Da(lk) + D3(lx), (112)

where D ((x) & H ! [eKJ(EK)—eKJ(KK)] and
(%) éil (Hi'Ex,;((x)) " H'hg
i( 1)? (Hg'Exi(fx))" H'hye
(k) = i(—l)q (Hi'Ex j(0x))" Hy'ex j (£x)
—i( ) (B B (00)) Fiten ()

2) Proof of success when k = K + 1: According to the
triangular inequality for norms, we can bound

lex,i(lx) —ex j(lx)ll < 2|ex(lx)ll
1Ex,i(lx) — Ex j(lx)ll <2 Ex(lx)llp

Using (110), we can bound the norm of the first term as
IDa (L)l < 2 [[HEH | ller ()| < EXJx0mm) (113)

Similarly, the infinite sum in the second term is bounded as

(114)

oo

> (=1 [(ﬁz?lEKyj(fK))q

q=1

<23 (|B | ER ()] 2)°
g=1

N (ﬁ;EK,i(zK))q}

éA(ZK 7Zmin)

o 1- q
<2y (o) = S
=2 (1 $x{fetmm)

where the last equality comes from the convergence of geo-
metric series limz oo Y b, aF = a/(1 — a) for any |a| < 1.
Since 0 < £ < € < 1/2 and AY* ) < 1, then

)\ EK me) ~
¢ oy < 28\ {fre = bmin) (115)
(1= 1o )
and thus the norm of the second term is bounded as
D2 (Cx )| < 2L~ Emin) | H | || B | (116)
20max€max ~ — i
< R e i), (117)

O min

where the last inequality comes from (91). Following the same

rationale, the norm of the third term can be bounded as

D3 (k)| |<22 [H | B (Cre)ll ) || exc ()|
qg=1

<23 (R B i)
2

1~A(£K_£xllixl) o
25 n
1

Exy )

g+1

1~ -
= — . 7£>\(€K_€min) < é’)\(ék'_émin)-
(o) 2 "
where the last inequality has used the results in (115). Note

that this is again a very loose bound.

Substituting = IC¢/(02,,D) in (93) back to (113), (114)
and (118) and using the constants C; and C5, we have

A (¢x0) — dX (0| < € (CCD@> At

Similarly, based on (47) and (90), we have

K+1 _ K+1||
J

[E5
< i = x|+l () - K(fK)H

(40 B ()

CC1Cy (g —Lrmin)
=5( 5 )Zw :

k=0

and therefore given that the recursion holds for £ = K, it
holds true for k = K + 1. The induction is complete. Given
(45), we have ¢ < 4DAY™" TV and

K
xEH| <4000y Y AT

[BSAR (118)

k=0

APPENDIX E

PROOF OF THEOREM 2

By the decomposition in (41), we have
dj (6x) — df (119)

-1
= [Q(Xf) + Sk, + B (0r)] [Q(Xf) + Ski + €n,i (k)]
- Q(x})a(xy).

Now that we verify that the matrix series expansion holds
for similar approximations. First of all, from Lemma 4 and
in particular (106), we have ||Sy ;(¢x)|| < vsCi1Aac€&/D. The
expansion depends on the quantity

1Q'( SszrEkzék M

< HQ X;) H ISkl + ||Q* Xf)” IEx,i(Cr)]| -



Using the derivation in (108) and C7,Cs in (47), we have

Q™ (xF) (Skyi + Epi(lr))||

VSCClcQ CCQ (Lr—Lo)
<o (D Jrs+ (S5 ) e
co,

1
<I/5C102)\00 + 4>\§f’“éo)> &

< CCQ (V)\oo01C2 + 1) 5 < f < 17 (120)
D 2
=1, from (45)

(1]
where the last inequality is by the definition of D in (45).
Then (119) can be re-written as

d; (t) — [3]

o0

Q'(x;) — Z (Q7" (xH)(Sk + Era(ti))” Q7' (xF)

X [Q(X )+ Sk,i + €ri(lk )} - Q '(x))a(x})
Q1 (xF) [ski + eni (1]

(Q (xF) (S, + Ek,i(ék)))q Q ' (xN)a(x;)

[4]
[5]
[6]

M8A

[7]

=)
Il
-

Q7 (xF)(Ski + Eri(lr))) " Q7 (xF) [sk,i + em—(ﬁk)%g]

NE

s}
_

According to Lemma 4 and Assumption 4, we have
Isk,i (€x)]| < vsCC1C2A0€/ D, and the norm of the first term
above can be bounded similarly as (120)

[9]

(10]
Q71 (xF) [sk.i + eni(L)]]| < € (121)
11
Likewise, the norm of the second term is bounded as ]
S [12]
- 4~
(Q () (Sk.i + Ena(tr))” Q7 (x)a(xf)
=1
o [13]
SZ Q7 (x¥)(Ski + Eri(@)])* [|Q 7 (xF)a(xF)
=t [14]
O'maxgmax Jmaxemax g Jmaxemax
< — 1= <2
r2nin ; g 0r2n111 1- E Ur2nin 5’
! [15]
and similarly for the third term
—1/k (161
Z )(Ski + Eri(l) " Q7 (xF) [sh.i + ex,i(€r)]
q=1 . 52 [17]
)(Skyi + Epi ()] = >
<ZHQ (Ski + Bia(tr)| <q215 —
Furthermore, since £ € (0,1/2), the above expression can be 1)
simplified as £2/(1 — ¢) < 2¢. Finally, summing them up and
using the constant C'; we have [19]
¥ (e) - at]| <2(1+"‘“a§6m*"‘>5:015 (122)
O min [20]

for all ¢ and k. Now we have established that the discrepancy
between the decentralized descent and the exact descent can
be bounded by an arbitrarily small error ¢ specified by the

[21]

system. Given (45), we have

Lnin+1
¢ < 4DA| ), (123)

and therefore, the perturbation bound « on the error recursion
in Lemma 2 can be obtained as

K £ AC; DALt (124)
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