Traust: A Trust Negotiation-Based Authorization Service
for Open Systems

Adam J. Lee and Marianne Winslett
Department of Computer Science
University of lllinois at Urbana-Champaign
201 N. Goodwin Ave.

Urbana, IL 61801

{adamlee, winslett}@cs.uiuc.edu

ABSTRACT

In recent years, trust negotiation (TN) has been proposed
as a novel access control solution for use in open system
environments in which resources are shared across organi-
zational boundaries. Researchers have shown that TN is
indeed a viable solution for these environments by devel-
oping a number of policy languages and strategies for TN
which have desirable theoretical properties. Further, exist-
ing protocols, such as TLS, have been altered to interact
with prototype TN systems, thereby illustrating the utility
of TN. Unfortunately, modifying existing protocols is often a
time-consuming and bureaucratic process which can hinder
the adoption of this promising technology.

In this paper, we present Traust, a third-party authoriza-
tion service that leverages the strengths of existing proto-
type TN systems. Traust acts as an authorization broker
that issues access tokens for resources in an open system
after entities use TN to satisfy the appropriate resource ac-
cess policies. The Traust architecture was designed to al-
low Traust to be integrated either directly with newer trust-
aware applications or indirectly with existing legacy appli-
cations; this flexibility paves the way for the incremental
adoption of TN technologies without requiring widespread
software or protocol upgrades. We discuss the design and
implementation of Traust, the communication protocol used
by the Traust system, and its performance. We also dis-
cuss our experiences using Traust to broker access to legacy
resources, our proposal for a Traust-aware version of the
GridFTP protocol, and Traust’s resilience to attack.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—ac-
cess controls, authentication; K.6.5 [Management of Com-
puting and Information Systems]: Security and Pro-
tection; C.2.3 [Computer-Communication Networks|:
Network Operations

Jim Basney and Von Welch

National Center for Supercomputing Applications

University of lllinois at Urbana-Champaign
1205 W. Clark St.
Urbana, IL 61801

{jbasney, vwelch}@ncsa.uiuc.edu

General Terms

Security, Management

Keywords

Attribute-based access control, credentials, trust negotiation

1. INTRODUCTION

Due to recent Internet trends—including peer-to-peer net-
works, grid computing, and corporations restructuring as
virtual organizations—Ilarge-scale open systems in which re-
sources are shared across organizational boundaries are be-
coming ever more popular. Making intelligent access control
decisions in these systems is a difficult task, as a potentially
unbounded number of users and resources exist in an en-
vironment with few guarantees regarding pre-existing trust
relationships. Traditional access control systems fail to work
in these systems either because they cannot scale to such a
large user base or make unrealistic assumptions about ex-
isting trust relationships in the system. As open systems
continue to gain popularity, it is critical that the access con-
trol problem be addressed.

Trust negotiation is an active area of research aiming to
help solve the problems surrounding authorization in open
systems. In trust negotiation, access control decisions are
made based on the attributes of the entity requesting access
to a particular resource, rather than his or her identity. To
determine whether an entity should be granted access to a
resource, the entity and resource provider conduct a bilateral
and iterative exchange of policies and credentials (used to
certify attributes) to incrementally establish trust in one
another.

To date, work in trust negotiation has focused primar-
ily on the development of languages and strategies for trust
negotiation (from at least eight research groups [1, 3, 5, 9,
10, 14, 16, 23, 26, 30]) and the embedding of trust nego-
tiation into commonly used protocols [11]. These research
efforts have shown that the flexible nature of trust negotia-
tion makes it a viable solution to the problem of authoriza-

Permission to make digital or hard copies of all or part of this work for tion in open systems. If software engineers could easily re-
personal or classroom use is granted without fee provided that copies aredesign all major applications and protocols to support trust
not made or distributed for profit or commercial advantage and that copies negotiation natively, the problem of making authorization
bear this notice and the full citation on the first page. To copy otherwise, to Jecisions in open systems would be solved. Unfortunately,
republish, to post on servers or to redistribute to lists, requires prior specific redesigning and restandardizing existing protocols is a time-

ermission and/or a fee. . .
P consuming process. To address this problem, we propose

SACMAT'06 June 7-9, 2006, Lake Tahoe, California USA. Raa .
Copyright 2006 ACM 1-59593-354-9/06/0006$5.00. Traust, a stand-alone authorization service that allows for



the adoption of trust negotiation in a modular, incremental,
and grassroots manner, providing access to a wide range of
resources without requiring widespread software or protocol
upgrades.

In our approach, a collection of Traust servers act as bro-
kers for the security tokens needed to gain access to the
resources located in a given security domain. The format
of these tokens is not restricted by Traust; tokens can be of
any format, including (username, password) pairs, Kerberos
tickets, SAML assertions, and X.509 certificates. Clients
contact Traust servers and negotiate for access tokens for
logical or physical resources including network servers, RPC
methods, and organization-wide roles. The Traust service
also provides clients in the system with an opportunity to
establish trust in the service prior to the disclosure of their
(potentially sensitive) resource access requests.

The Traust system was designed explicitly to meet the
needs of large-scale open systems. In particular, the Traust
system:

e uses current prototype trust negotiation systems (such
as Trust-X [3] or TrustBuilder [27]) to allow clients
to establish bilateral trust with previously-unknown
resource providers on-the-fly and negotiate for access
to new system resources at runtime;

e integrates transparently with newer, trust-aware re-
sources while still maintaining compatibility with and
allowing increased access to legacy resources;

e can broker access tokens in any format for any size se-
curity domain, ranging from single hosts (e.g., in peer-
to-peer systems) to entire organizations;

e has policy maintenance overheads that scale indepen-
dently of the number of users in the system and the
rates at which users join and leave the system.

The rest of this paper is organized as follows. In Section 2,
we provide an overview of trust negotiation and discuss re-
lated work in this area. Section 3 highlights the defining
characteristics of open systems; these are then used to derive
several important requirements for authorization systems
designed for these environments. Sections 4 and 5 present
the details of the Traust system architecture and resource
access protocol, respectively. In Section 6 we describe our
implementation of the Traust system and its performance,
discuss our experiences using Traust to broker access to ex-
isting legacy services, and comment on our proposal for a
Traust-aware GridFTP client and server. In Section 7 we
discuss how Traust meets the requirements identified in Sec-
tion 3 and present a security analysis of the Traust system.
We conclude and discuss potential directions for future work
in Section 8.

2. RELATED WORK

In this section, we first present an overview of trust nego-
tiation and its application to open systems. We then discuss
current research efforts in this area and their relationship to
Traust.

2.1 Trust Negotiation

Trust negotiation is a technique that has been proposed
to address the scalability limitations of existing access con-
trol solutions when used in the context of open systems. In

trust negotiation, the access policy for a resource is writ-
ten as a declarative specification of the attributes that an
authorized entity must possess in order to gain access to
the resource. In these systems, credentials and policies are
also considered resources, so sensitive credentials and poli-
cies can be protected by release policies of their own. In
this way, an access request leads to a bilateral and itera-
tive disclosure of credentials and policies between the user
and resource provider. During this process, trust is estab-
lished incrementally as more and more sensitive credentials
are exchanged.

As an example trust negotiation, consider the case in
which a user, Alice, wishes to access a service provided by
Bob. After Alice requests access to Bob’s service, Bob dis-
closes the access policy for his service, which states that in
order to use the service, Alice must disclose her digital stu-
dent ID. To protect herself from identity theft, Alice is only
willing to disclose her student ID credential to members of
the Better Business Bureau (BBB), so rather than disclose
her student ID credential, Alice sends Bob this release pol-
icy. Bob is in fact a member of the BBB and is willing to
disclose this credential to anyone. This satisfies Alice, who
discloses her digital student ID credential to Bob and is then
granted access to Bob’s service.

Access control systems based on trust negotiation are nat-
ural candidates for use in open systems. Allowing resource
access policies to be specified based on the attributes of au-
thorized users circumvents the scalability problems associ-
ated with maintaining identity- or organization-based ACLs
as the size of the system increases. In addition, trust negoti-
ation allows mutually distrustful parties to gain trust in one
another incrementally and bilaterally in a privacy-preserving
manner.

2.2 Current Research

In recent years, trust negotiation has been an active area
of research within the security community. Recent research
in trust negotiation has focused on a number of important is-
sues including languages for expressing resource access poli-
cies (e.g., [1, 2, 9, 16]), protocols and strategies for conduct-
ing trust negotiations (e.g., [3, 14, 15, 30]), and logics for
reasoning about the outcomes of these negotiations (e.g., [5,
28]). The foundational results presented in these works have
also been shown to be viable access control solutions for real-
world systems through a series of implementations (such as
those presented in [3, 13, 27]) which demonstrate the utility
and practicality of these theoretical advances.

Implementations of trust negotiation typically provide a
means of parsing policies, handling certified attributes, and
determining policy satisfaction. Existing trust negotiation
implementations have been successfully embedded in sev-
eral commonly used applications and protocols (for a num-
ber of examples, see [11, 12]). Unfortunately, trust negotia-
tion is in many ways fundamentally different from existing
access control solutions and integrating these implementa-
tions with existing protocols has been a challenging process
involving the modification of standardized protocols. A de-
tailed discussion of modifications made to TLS to support
trust negotiation-based access control for the World Wide
Web is presented in [11]. While this clearly demonstrates the
utility of trust negotiation, revising the protocols needed to
access every resource used in open computing systems would
be a daunting task.



Traust was designed to provide an easier migration path
for the adoption of trust negotiation. Traust servers act as
reference monitors that use existing trust negotiation imple-
mentations to determine which users are authorized to ac-
cess resources within their protection domains. Authorized
users are issued access tokens by the Traust server which
are encoded in formats understood by existing applications.
Traust servers are authorization brokers that effectively use
trust negotiation to control access to legacy resources with-
out requiring protocol or software upgrades at these end-
points. Traust can also be integrated directly with newer
trust-aware applications, thereby making it a viable long-
term access control solution for open systems rather than
simply a short-term fix. In the remainder of this paper, we
discuss the design and implementation of the Traust system.

3. DESIGN REQUIREMENTS

In designing Traust, our goal was not only to provide a
migration path for the integration of trust negotiation tech-
nologies into existing open systems, but also to provide a
general-purpose authorization service which meets the needs
of open systems to the highest degree possible. To this end,
we now explore the defining characteristics of open systems.
We then use these characteristics to derive a set of func-
tional requirements which should be satisfied by any access
control solution designed for use in open systems.

In large-scale open systems, resource providers often wish
to realize the competitive advantages offered by allowing
qualified outsiders access to some of their resources under
certain conditions. Due to the large number of potential
users in these environments (e.g., all users with a valid stu-
dent ID), we cannot assume that resource providers will
know a priori the identities of all authorized clients that
might possibly wish to access their resources. In addition,
we cannot assume that clients will know the set of resource
providers that they might wish to interact with prior to the
start of these interactions. Given that there are compelling
business reasons for resource providers to permit all possible
qualified users to access their resources, we can immediately
recognize four important requirements that must be satis-
fied by any authorization system designed for use in open
computing systems.

Bilateral trust establishment To enable effective
resource sharing, we cannot require pre-existing trust
relationships between clients and resource providers; it
is important to allow these entities to establish trust
relationships with one another at runtime.

Runtime access policy discovery In large-scale open
systems, clients cannot be expected to know a priori
the access polices protecting resources of interest. Au-
thorization systems used in these environments should
allow clients to discover these policies as they become
relevant.

Privacy preservation To protect clients and resource
providers from malicious entities, their interactions
should reveal as little information as possible. Entities
should have some ability to control their disclosure of
sensitive information, including their objectives, poli-
cies, identities, and attribute information.

Scalability Authorization systems used in open comput-
ing systems should be scalable both in terms of main-
tenance overhead and size of protection domain. Ac-
cess policies should scale well in spite of a potentially
unbounded number of users joining and leaving the
system, while still maintaining an appropriate level
of expressiveness. To accommodate the heterogene-
ity of these systems, the service should be light-weight
enough for a single user (e.g., a peer-to-peer client)
to deploy on her local machine, yet robust enough to
meet the demands of a large security domain.

In addition to these four requirements, it is important to
include another, more practical, property:

Application Support Incorporating a new authorization
service into existing open systems should not require a
complete redesign of deployed applications, protocols,
or the network infrastructure. The authorization sys-
tem should support tight interaction with newer appli-
cations designed to leverage its features explicitly, but
also remain accessible to clients who wish to access
legacy applications.

We do not make the claim that the above list of require-
ments is complete, as completeness will always depend on
the specific needs of a system’s participants. However, a sys-
tem embodying these five requirements will allow resource
providers to ensure that their resources (e.g., data, compu-
tational clusters, or other services) are available to as many
qualified users as possible without compromising the security
of the resource itself. Such a system will also enable users to
maximize their productivity by discovering resources at run-
time and dynamically gaining access to them. In Section 7.1,
we revisit these requirements and discuss how Traust satis-
fies each of them.

4. TRAUST SYSTEM ARCHITECTURE

Figure 1 illustrates the Traust system architecture. In
the remainder of this section, we describe each component
in greater detail.

Traust Servers In our system, Traust servers act as bro-
kers for the access rights to a set of resources in their
security domain. A Traust server contains a proto-
col interpreter that is responsible for carrying out the
steps of the Traust resource access protocol (discussed
in Section 5.3) and has some means of interacting with
its Trust Negotiation Agent (or Agents). Each Traust
server also maintains a repository of access tokens used
to grant access to the resources that it protects; these
tokens are issued to authorized users who negotiate for
access to the resources protected by the Traust server.

Traust Clients A Traust client is a process designed to
acquire access tokens for resources of interest to its
owner. Like a Traust server, a Traust client also con-
tains a protocol interpreter and a means of contacting
its Trust Negotiation Agent (or Agents). For systems
in which resource requests could themselves be consid-
ered sensitive (e.g., requests to access classified data),
Traust clients may have a local resource classifier which
can be used to determine the sensitivity classification
(or classifications) of a particular resource request and



Client Security Domain
- Y Dom
Traust Client

Protocol

2. Resource Access Protocol
Interpreter

Request

Release

Policies Access Token

Resource

. 2
>
—

Trust Negotiation Agent

Client

Resource Security Domain N

Protocol
Interpreter Access Token

Traust Server

Resource

Resource
Access

Repository Policies

®Request and
Access Token

Trust Negotiation Agent

Add Server

Client Certificate
Release

(DRequest

Access

Attribute
Certificates Policies

Application Y, \_

Policies Server Certificate

Attribute
Certificates Policies

Release

Resources

Figure 1: Traust system architecture

identify its corresponding release policy (or policies).
For maximum flexibility, a Traust client can be ac-
cessed directly by a user or by a Traust-aware applica-
tion. Further information regarding these two modes
of operation is presented in Section 6.

Trust Negotiation Agents Traust clients and servers re-
quire access to one or more Trust Negotiation Agents.
A Trust Negotiation Agent is responsible for under-
standing the protocol used for trust negotiation (e.g.,
the Trust-X [3], TTG [25], or TrustBuilder [27] pro-
tocol) and carrying out trust negotiation sessions on
behalf of the client or server processes that own it.
In addition, a Trust Negotiation Agent manages its
owners’ attribute certificates and their corresponding
release policies.

Logically, a Trust Negotiation Agent is part of the
Traust client and server applications, though it need
not run on the same physical machine and can be a
shared resource for all of a user’s processes. This al-
lows for increased flexibility, as the overheads of run-
ning the agent can be shared across multiple processes.
Allowing a Traust server to access multiple Trust Ne-
gotiation Agents also permits load-balancing during
periods of high traffic.

Access Token Repository Each Traust server maintains
a repository of access tokens that can be used to ac-
cess the services that it protects. This repository is
not a repository in the traditional sense, which implies
that it contains a static collection of tokens. Rather,
the repository may contain static tokens, but may also
contain instructions on obtaining or creating new to-
kens at runtime. For instance, the repository may cre-
ate new local accounts used to access resources that
it protects, acquire Kerberos tickets, generate SAML
assertions, or be delegated proxy certificates from a
MyProxy [17] server.

Resources Resources are the logical and physical objects
that Traust servers broker the access rights to. Some
examples of resources include networks, individual ma-
chines, services (e.g., web sites or file servers), RPC
methods, web services, or organization-wide role mem-
berships.

5. PROTOCOL OVERVIEW

In this section, we present an overview of the communi-
cation protocol used in the Traust system and discuss the
ways in which Traust components interact during the exe-
cution of this protocol. We focus our attention on message
semantics and permissible sequences of messages; the full de-
tails of the Traust protocol, including message contents and
formats, can be found in the Traust protocol specification.?

5.1 Session Security

All communications between a client and Traust server oc-
cur inside of a TLS [7] tunnel used to provide confidentiality
and integrity for the session. The tunnel itself is not used to
provide any notion of authentication or authorization; one
or more trust negotiation sessions are used for this purpose.
We discuss these trust negotiation sessions in greater detail
in Section 5.3.

5.2 Message Types

Messages in the Traust protocol can be divided into two
categories: functional messages and trust establishment mes-
sages. The functional messages and their replies allow a
Traust client to make requests of a Traust server and be
provided with information in return. The current version of
the Traust protocol supports two types of functional mes-
sages: Get Information and Resource Request.

Get Information (GI) The GI message allows Traust
clients to request public meta-data regarding a Traust
server with which they have an established connection.
The server’s response to this message may include in-
formation such as software and protocol versions, a
“message of the day,” administrative points of con-
tact, or other site-specific information. A GI request
may only be sent by the client at the start of a Traust
session.

Resource Request (RR) The RR message and its corre-
sponding response embody the main functionality of
the Traust service. RR messages contain a URI and a
series of optional (attribute, value) pairs describing a
resource that the Traust client wishes to acquire access
tokens for. This naming system is flexible enough to

!The entire Traust protocol specification is available at
http://dais.cs.uiuc.edu/traust/standards.html.



E
E

Get Information

TN Agent IN Agent
Get Information Response
—

Initiate Trust Negotiation

Trust Negotiation

Trust Negotiation

Trust Negotiation

Trust Negotiation

End Trust Negotiation

Resource Request

o
Y (Y (

Initiate Trust Negotiation

Trust Negotiation

Trust Negotiation

Trust Negotiation

Trust Negotiation

End Trust Negotiation

Resource Request Response

W)
M

D Y Y Y Y Y
ey v L LY LY

R R ' R ' W E H R IR N D EA W
———ye Ly LY ____

Figure 2: The Traust resource access protocol

specify a wide variety of resources, including entire net-
works, enterprise-wide roles, or individual hosts, ser-
vices, or method calls. The server response to this
message contains either a failure notification or a col-
lection of access tokens that can be used to access the
requested resource.

To control the flow of sensitive information between clients
and servers in the system, Traust supports three trust estab-
lishment message types: Initiate Trust Negotiation, Trust
Negotiation, and End Trust Negotiation.

Initiate Trust Negotiation (ITN) This message serves
as a flag to indicate that a new trust negotiation ses-
sion is about to begin. After receiving an ITN message,
the Traust client (or server) will forward subsequent
messages to one of its associated Trust Negotiation
Agent processes for processing until an End Trust Ne-
gotiation message is received.

Trust Negotiation (TN) TN messages are used to en-
capsulate a trust negotiation session carried out be-
tween the Trust Negotiation Agent processes of the
Traust client and Traust server. The policies and cre-
dentials exchanged between parties in the Traust sys-
tem are encoded in the body of these messages. Several
rounds of TN messages may be required for the initi-
ating party to determine whether an acceptable level
of trust has been gained in the responding party.

End Trust Negotiation (ETN) The ETN message serves
as a flag to indicate that a trust negotiation session has
just completed. Upon receiving an ETN message, the
receiver will cease forwarding subsequent messages to
their Trust Negotiation Agent.

Next, we describe how these messages are ordered to form
the communication protocol used in the Traust system.

5.3 Resource Access Protocol

At a high level, the Traust resource access protocol maps
users’ attributes into access tokens that are meaningful in
the local security domain of the resource that is to be ac-
cessed. This protocol takes place in five stages: local classifi-
cation, server trust establishment, request disclosure, client
trust establishment, and response.

Prior to establishing a connection to a Traust server, the
user’s Traust client is provided with the description of a re-
source that the user wishes to negotiate for access to. This
description may be generated explicitly by the human user
(e.g., after reading a web page describing how to access a
legacy service protected by a Traust server) or generated
on-the-fly by a client application interacting with a Traust-
aware resource. During the local classification stage, this
resource description is examined using a local content clas-
sifier to determine its sensitivity classification or classifica-
tions. The Traust client then maps these sensitivity classi-
fications into release policies that will be used in the server
trust establishment phase.

During server trust establishment, indicated by the label
‘A’ in Figure 2, the Traust client initiates zero or more
content-triggered trust negotiation sessions [10] with the
Traust server—one for each release policy discovered during
local classification. Alternatively, the client could initiate
a single negotiation using a new policy derived from some
function of these release policies. This process determines
whether the Traust server is trustworthy enough to receive
the resource request issued to the Traust client and prevents
inadvertent disclosure of sensitive requests to unauthorized
Traust servers.

Each trust negotiation session in the server trust estab-
lishment phase is initiated by the client sending an Initiate
Trust Negotiation message to the server. The client’s Trust
Negotiation Agent then conducts an iterative exchange of
Trust Negotiation messages with the server’s Trust Negotia-
tion Agent, reporting the results of this negotiation back to
the Traust client. The Traust client terminates this phase
by sending an End Trust Negotiation message to the Traust
server. Should the client fail to establish trust in the server
during this phase of the protocol, the Traust client closes its
connection with the server and reports a failure to the user.

If the Traust client establishes trust in the server, the
Traust session enters the resource disclosure stage. At this
point, the Traust client sends a Resource Request message



(GI¢GIs)?(ITNo(TNYETN¢YRRo(ITNs(TNY'ETN §)?RRs

Figure 3: A regular expression describing successful executions of the resource access protocol

to the Traust server describing the resource that the user
wishes to access. This disclosure is indicated by the label
‘B’ in Figure 2.

Upon receiving the Traust client’s Resource Request mes-
sage, the Traust server examines it to determine the access
policy that protects the requested resource. The server then
begins the client trust establishment phase, indicated by the
label ‘C’ in Figure 2, by sending an Initiate Trust Nego-
tiation message to the client. The Traust server’s Trust
Negotiation Agent then carries out a negotiation with the
client’s Trust Negotiation Agent via an iterative exchange of
Trust Negotiation messages. When the negotiation is over,
the Traust server sends an End Trust Negotiation message
to the Traust client to indicate this fact.

In the response phase, indicated by the label ‘D’ in Fig-
ure 2, the Traust server indicates the status of the resource
access protocol. If the server failed to establish trust in the
client, the client is sent a failure notification in the Resource
Request response message. If the Traust server did estab-
lish trust in the client, however, it obtains the access tokens
needed for the client to access the requested resource and
passes these tokens to the client in the Resource Request
response message. Obtaining an access token could be as
simple as looking up a static token, or could involve gen-
erating a new local account or interacting with an external
service (e.g., Kerberos, MyProxy, or CAS [19]) to obtain the
needed access tokens.

To help detect certain types of attacks, it is important
to differentiate between valid and invalid executions of the
resource access protocol. Figure 3 is a regular expression
describing successful executions of the Traust resource ac-
cess protocol. The message abbreviations are those used in
Section 5.2 and the subscripts indicate whether a particu-
lar message was sent by the client (C) or server (S). Note
that we include the optional transmission of a Get Informa-
tion message and its response, though it was not discussed
in this section. Any sequence of messages not described by
this expression is considered invalid; a correctly functioning
participant in the resource access protocol should immedi-
ately close any connection upon which an invalid execution
has been detected.

6. IMPLEMENTATION

In this section, we discuss our implementation of the Traust
system. In addition, we discuss our experiences using Traust
to broker access to legacy resources (e.g., password-protected
web sites), comment on our proposal for a Traust-aware
GridFTP client and server, and address the performance
of our prototype implementation.

6.1 Implementation Details

We have developed a prototype implementation of the
Traust service using the Java programming language. We
provide a client API that can be embedded into applica-
tions that wish to interact directly with a Traust server. In
addition, we have developed both command line and graph-
ical Traust clients which allow human users to interact with

a Traust server to request access tokens for legacy services
whose clients do not natively support Traust. We also pro-
vide an extensible resource classification API which allows
users to develop custom request sensitivity classifiers. Be-
cause defining these types of classifiers can be difficult, a
user’s organization (e.g., their employer or credential issuer)
is likely to supply them with the classifiers for sensitive re-
quests. In our implementation, a resource classifier based
on substring matching is used by default.

Our server implementation provides an extensible API
which can be used to interface with a wide variety of ac-
cess token repositories. We have developed a simple, yet
flexible, token repository that allows the server to obtain
the tokens needed to access a given resource by either (1)
accessing tokens stored directly in the repository, (2) refer-
encing files located on the local file system, or (3) interfacing
with external processes. We have used the latter mechanism
to generate one-time-use passwords, delegate X.509 proxy
certificates, and create temporary local accounts.

Both the client and the server currently utilize Trust Ne-
gotiation Agents based on the TrustBuilder framework for
trust negotiation [27]. TrustBuilder currently supports the
use of X.509 attribute certificates for credentials and the
IBM Trust Policy Language [9] for access policy specifica-
tion, with future support for other policy languages and cre-
dential types. TrustBuilder has been successfully integrated
with a number of protocols and applications [10, 11, 20],
making it a good choice for use in the Traust system. In the
future, we plan to extend the Traust resource access pro-
tocol to allow for the use of trust negotiation agents other
than TrustBuilder.

6.2 Usage with Legacy Resources

In some computing environments, it is considered accept-
able to require that clients manually acquire resource access
tokens prior to using networked services. For instance, at
many universities, users wishing to access student records
must first acquire a Kerberos ticket using a stand-alone
client application (e.g., kinit). For these environments, we
have developed command line and graphical Traust clients
that allow users to manually request access tokens for legacy
services that do not natively support Traust interaction.
Figure 4 shows a screen shot of our graphical Traust client.

As an example of how Traust might be used in this type of
environment, consider the case of a rescue dog handler who
hears a newscast about a building that has collapsed and
wishes to help in the recovery effort. The newscast gives the
URL of a web-based information portal that will be used
to coordinate the recovery effort. The user browses to this
web site and is presented with a login form and resource de-
scriptor to pass into his Traust client that will allow him to
negotiate for a temporary login and password to the portal.
The Traust interaction allows the client to establish trust in
the server (e.g., that the server is a state-sponsored disaster
response coordinator, not a hoax) and allows the server to
verify the user’s credentials (e.g., that he is a certified res-
cue dog handler with up-to-date vaccinations, not a news
reporter looking for a hot story). The Traust server then



£ Graphical Traust Client w0.1 T e _-Iljiﬂ
-Configuration

Configuration File: |c:J’Traustfcunﬂgrclient.conf |

Traust Server: [traustmycarn com |

Server Port: ’El
-Resource Information
Resource: |
| Place Resource Request
Status

Waiting for client inputs...

Figure 4: The graphical Traust client

returns a temporary login and password for the web site,
which the client application displays to the user.

We have built a testbed information portal for this ap-
plication and used Traust to allow previously unknown, but
qualified, users to obtain authorization to access the infor-
mation contained within. In addition, Traust has been used
in a similar fashion to issue X.509 proxy certificates that
control access to a file server.

6.3 Traust-Aware Resources

In addition to using Traust to control access to legacy
resources, we wish to allow for the development of services
that support Traust natively. These applications can embed
Traust interactions in their access protocols, allowing users’
client applications to carry out any necessary Traust inter-
actions without requiring the user to initiate this process.
As an example of how to permit this form of tight inter-
action with Traust, we have proposed two modifications to
GridFTP, a secure mass data transfer protocol used heavily
in the context of grid computing.?

The first of our proposed modifications would allow a
user’s GridFTP client application to query the GridFTP
server (prior to login) for the name of the Traust server bro-
kering access to this server. The client application could
then execute the Traust resource access protocol with this
server without user intervention. If the Traust server au-
thorizes the client to access the GridF'TP server, the Traust
server would issue the client an X.509 proxy certificate that
the client could use to log into the the GridF'TP server using
the existing Grid Security Infrastructure [24].

Our second modification defines a simple syntax for ac-
cess “hints” that could be provided by a GridFTP server.
In the event that a client command fails due to insufficient
access rights, the server could embed an access hint in the
error message returned to the client application. These hints
identify a Traust server to contact, and a corresponding re-
source request. A Traust-aware GridF'TP client could then,
without user intervention, execute the resource access pro-
tocol with this Traust server in order to obtain a new a new
X.509 proxy certificate. This certificate could be used to re-
authenticate to the GridFTP server and successfully retry
the previous request without terminating the current ses-
sion. This would allow GridFTP servers to enforce the prin-

2The complete details of our proposed modifications
are available at http://dais.cs.uiuc.edu/traust/
standards.html.

ciple of least privilege [21], as clients’ access rights could be
changed as they perform different operations on the server.

6.4 Performance

We now comment on the performance of our implementa-
tion in two representative usage scenarios. All averages re-
ported in this section were calculated over 10 trials executed
between a 2.8GHz Pentium 4 with 1GB RAM running Win-
dows XP SP2 and a 2.5GHz Pentium 4 with 512MB RAM
running Linux. In the first scenario, the client releases its re-
source request to the Traust server without requiring a trust
negotiation. The Traust server then initiates a single-round
trust negotiation with the client in which the client demon-
strates proof of ownership of one attribute certificate. This
case is indicative of Traust interactions that might be seen in
corporate environments where users are asked to show their
digital employee ID card or role certificate to gain access to
a particular resource. We ran this scenario across our de-
partment’s network at midday and found that, on average,
it executed in 2.77 seconds with a standard deviation of 0.18
seconds. The two major components of this time are con-
nection establishment (1.12 seconds) and creating the client
Trust Negotiation Agent and carrying out the trust negoti-
ation (1.33 seconds).

The second scenario uses the disaster response informa-
tion portal discussed in Section 6.2. In this scenario, the
client is only willing to disclose his access request to Traust
servers that can prove that they are operated by a state-
sponsored disaster response coordinator, and uses the server
trust establishment phase of the resource access protocol to
enforce this. The Traust server is able to prove ownership
of an attribute credential indicating this fact, which satisfies
the client, who then discloses his request for access to the
information portal.

At this point, the server requests that the client prove that
he is a certified rescue dog handler, is over the age of 18 (by
showing a state-issued driver’s license), has a recent tetanus
vaccination (the record of which is issued by a state-certified
board of health), and that his dog has a recent rabies vac-
cination (the record of which is issued by a state-certified
county). In response to this request, the client demonstrates
proof of ownership of his rescue dog handler certificate and
discloses the release policies protecting his driver’s license
and both vaccination records. The release policy protecting
his driver’s license requires that the server disclose a pri-
vacy policy issued by an accrediting organization, while the
release policy protecting both vaccination records requires
that the server prove that it is operated by a department
of some U.S. state. The Traust server is willing to disclose
this information, at which point the client sends over the re-
maining credentials required by the server. In all, these two
trust negotiations took place over three rounds and involved
the disclosure of nine credentials (including supporting cre-
dentials for certification chains). On average, this scenario
executed in 4.04 seconds over our department’s network at
midday with a standard deviation of 0.12 seconds. The main
components of this time are connection establishment (1.12
seconds), creating the client Trust Negotiation Agent and
carrying out the first negotiation (1.58 seconds), and the
second trust negotiation (1.34 seconds).

Clearly, executing the Traust resource access protocol takes
longer than using a more traditional means of acquiring
resource access tokens (e.g., obtaining a Kerberos ticket).



However, this comparison means very little, as traditional
access control systems cannot be used in open systems en-
vironments since the identities of authorized users may not
be known a priori, requiring users to resort to out-of-band
methods to gain access (e.g., sending written requests to re-
source providers). Additionally, the client used in these tests
created a new Trust Negotiation Agent at each invocation,
a process which takes 0.93 seconds on average; configur-
ing the client to use a stand-alone Trust Negotiation Agent
would eliminate this overhead. Further, to the best of our
knowledge, the TrustBuilder system has not undergone a
performance evaluation study, so there exists opportunity
for optimization within that system. The benefits of al-
lowing previously unknown users to negotiate for access to
resources outweigh the modest cost of the negotiation.

Currently, studying the scalability of Traust as the num-
ber of concurrent connections increases would have little
value. The policy engines used by prototype trust nego-
tiation implementations such as TrustBuilder are highly un-
optimized and would skew any measured results. However,
we plan to conduct such a study once high-performance pol-
icy evaluators such as CPOL [6] are integrated with existing
trust negotiation systems.

7. DISCUSSION

In this section, we discuss the security properties of the
Traust system. First, we describe the ways in which Traust
meets the needs of large-scale open systems by addressing
each of the requirements presented in Section 3. We then
present an informal security analysis of Traust and address
possible attacks against the system.

7.1 Requirements Revisited

Section 3 introduced five requirements for authorization
systems to be used in open systems: bilateral trust establish-
ment, runtime access policy discovery, preservation of pri-
vacy, scalability, and application support. The Traust sys-
tem architecture and resource access protocol were designed
to address these goals from the start. Bilateral trust estab-
lishment and runtime access policy discovery are attained
through the use of trust negotiation in the server and client
trust establishment stages of the resource access protocol.
To help preserve privacy, these negotiations can leverage ne-
gotiation strategies that limit the disclosure of sensitive cre-
dentials. In environments where some requests themselves
could be considered private, clients may also enforce their
own request release policies. Traust’s use of trust negotia-
tion implies that access policies are specified in terms of the
attributes that an authorized user must possess, thus policy
maintenance overheads scale independently of the number
of users joining and leaving the system. The performance
of the Traust service prototype is reasonable (roughly 4 sec-
onds on average for a complex interaction). Lastly, Traust
integrates with both legacy and Traust-aware resources.

7.2 Security Evaluation

Though Traust adequately addresses the five functional
requirements discussed in Section 3, these properties say
very little about the security of the system. In this section,
we discuss the security properties of the Traust system and
address several potential attacks against Traust.

7.2.1 Session Security

In the Traust system, session security is provided through
the use of the TLS protocol. In [7], the authors present a
security analysis of the TLS protocol under the assumption
of an active attacker [8] with the ability to intercept, mod-
ify, delete, and replay messages sent over the communication
channel. In the case that the public key of one party in the
protocol is authenticated, the authors show that the TLS
channel is secure against man-in-the-middle attacks, thus
the two parties can be assured of the confidentiality and in-
tegrity of the messages transmitted using TLS. In situations
where a Traust server is run by an organization such as a
university, research center, or corporation, the server can
be issued a certified public key much in the same way that
World Wide Web servers are issued certified keys today. In
these cases, the security evaluation presented in [7] applies
to the session security of Traust.

In environments where neither the client nor the server
has a certified public key (e.g., peer-to-peer networks), the
TLS protocol is vulnerable to a man-in-the-middle attack
during session establishment. The implication of this attack
is that an unauthorized third party can read and alter mes-
sages sent through the TLS tunnel, unknown to the client
and server. The SSH [29] protocol is subject to the same
such attack, as it is rarely the case that SSH servers have
certified public keys. In SSH, the threat of this attack is
usually mitigated by caching previously-used public keys. In
this way, unless the man-in-the-middle attack occurs during
the first connection between the client and server, it can be
detected, as the cached public key of the legitimate server
and the public key returned by the man-in-the-middle will
not match. We argue that the threat of this attack can be
reasonably mitigated in Traust by using the same practices
as are used in SSH. As in SSH, however, highly sensitive
non-certified public keys should be verified out-of-band to
prevent this attack. Given that it is possible to prevent
man-in-the-middle attacks against the TLS protocol, we ar-
gue that the security analysis presented in [7] ensures that
messages exchanged during the Traust resource access pro-
tocol can be viewed only by their intended recipients.

7.2.2 Single Point of Attack

In addition to attacks on the Traust resource access pro-
tocol, we must also consider attacks on the Traust server
itself. If a single Traust server brokers access tokens for a
large number of resources, it will be an appealing target for
attack, as a successful attacker could possibly gain access
to a large number of resources by compromising a single
Traust server. We now discuss several potential solutions to
this problem.

Small protection domainsrhe Traust server that con-
trols access to a given resource can be run on the same
physical machine as the resource itself. In this case, a com-
promise of the machine that the Traust server is running on
only grants the attacker the access tokens needed to access
the single resource that the server was protecting. In addi-
tion, these tokens are of no value, as the attacker implicitly
gains access to that resource by compromising the machine
on which the resource is located.

This Traust server configuration model clearly prevents an
attacker from gaining access to multiple resources by com-
promising a single node, and motivates the use of Traust in
peer-to-peer systems. We next consider two arrangements of



Traust servers for use in organizations wishing to maintain
a more structured organizational model.

Hierarchical arrangementHere we consider arranging
the Traust servers protecting access to an organization’s re-
sources in a hierarchical fashion. In this model, the Traust
servers at the upper level of the hierarchy broker access
rights for a large number of low-sensitivity resources. As
we proceed down the hierarchy, Traust servers broker access
to fewer, but more sensitive, resources.

In addition to the distribution of access rights discussed
above, high-level Traust servers also know which lower-level
servers broker access rights to other resources in the net-
work. This knowledge allows higher-level servers to redirect
client traffic to an appropriate lower-level server, making
the organizational infrastructure easier to navigate for the
client. We believe that this allows an adequate trade-off be-
tween the granularity at which Traust servers are deployed
and the consequences of compromising one of these servers.

Secret sharingFor organizations not willing to pay the
administrative costs associated with maintaining a hierar-
chy of Traust servers, we now discuss a protection strategy
based on secret sharing [4, 22]. In this model, an organi-
zation deploys multiple Traust servers, the exact number
of which is determined by the organization’s unique needs.
A client wishing to access a given resource contacts one of
these servers and carries out the resource access protocol to
attempt to gain access. Rather than being returned the to-
ken needed to access that resource, an authorized client is
given a share of the access token and a list of other Traust
servers. Upon completing the resource access protocol with
a preset threshold, k, out of the n Traust servers, the client
will have the ability to reconstruct the access token. In this
model, an adversary needs to compromise multiple Traust
servers to gain access to any resource. Further research is
required to investigate how to securely manage the attribute
certificates replicated across multiple Traust servers.

In both the hierarchical and secret sharing Traust server
deployment models, Traust server administrators must keep
several things in mind. To reduce the number of potential
vulnerabilities that could be used to compromise a Traust
server, only a minimal set of services should be configured.
For instance, in [17] the authors suggest that a MyProxy
server be run on a “tightly secured host (e.g., comparable
to a Kerberos Domain Controller)”; this minimum precau-
tion must also be taken to protect any Traust server bro-
kering access to highly valuable resources. Additionally, if
multiple Traust servers are to be deployed, their hardware
and software configurations should be as heterogeneous as
possible [31, 18] to prevent the threat of a single exploit
compromising multiple Traust servers.

Note that it is possible to compose the hierarchical and
secret sharing Traust server deployment models to meet the
needs of a particular organization or resource provider. This
flexibility allows administrators to effectively manage the
trade-offs that exist between server maintenance overheads,
the arrangement of servers within an organization, and the
effects of compromising a Traust server.

7.2.3 Denial of Service

The potentially centralized nature of a Traust deployment
along with the relatively heavyweight process of trust nego-

tiation make Traust servers interesting targets for denial of
service attacks. To prevent malicious users from extending
the number of rounds required to reach a decision during a
trust negotiation, Ryutov et. al integrate TrustBuilder with
the GAA-API and leverage the GAA-APT’s mechanisms for
responding to changes in system context [20]. They show
how negotiation strategies and policies can be adapted at
runtime in response to suspicion of denial of service, thereby
increasing system availability. Production implementations
of the Trust Negotiation Agent used by the Traust server
should use a mechanism such as this to help mitigate the
threat of denial of service attacks based on trust negotia-
tion.

Another, more standard, technique to help reduce the risk
of denial of service attacks on Traust servers is replication.
Since a Traust server can be decoupled from the resources
to which it brokers access, high-traffic Traust servers can be
replicated to prevent them from becoming bottlenecks. An
organization that wishes to both allow their Traust servers
to remain available during denial-of-service attacks and pre-
vent the compromise of some number of Traust servers from
allowing unauthorized access to their resources could use
a k-of-n secret sharing scheme as described above. This
scheme ensures that as long as k Traust servers are avail-
able, authorized users can obtain the tokens necessary to
access resources provided by the organization.

8. CONCLUSIONS & FUTURE WORK

In this paper, we discussed the design and implementation
of the Traust authorization service. Traust was designed
to enable trust negotiation, a promising new authorization
technology designed for open systems, to be integrated with
existing protocols and applications used in open systems
without requiring the restandardization or upgrade of ex-
isting protocols. In addition to providing a migration path
for the adoption of trust negotiation, the Traust service was
designed to be a long-term access control solution for open
systems. We described the Traust architecture and resource
access protocol in detail, discussed our implementation and
experiences using the Traust service, and presented a secu-
rity evaluation of Traust.

In the future, we plan to examine how Traust can be
extended to support third-party negotiations for the pur-
poses of obtaining new attribute certificates at runtime. We
can imagine many situations in which a Trust Negotiation
Agent is asked to show an attribute certificate that it does
not possess, but could likely obtain. Extending Traust to
support attribute certification hints would allow one Trust
Negotiation Agent to tell another how to use Traust to lo-
cate attribute certificates that it does not currently possess.
This however, would also allow malicious entities to waste
the time of their negotiation partners, making this an inter-
esting area to investigate. In addition, we plan to further
explore how to securely manage the access tokens stored
in the repository of a Traust server and extend the Traust
resource access protocol to allow parties to use trust nego-
tiation agents other than TrustBuilder.

Acknowledgments

This research was supported by NCSA and by the NSF un-
der grants 1IS-0331707, CNS-0325951, and CNS-0524695.
Lee was also supported in part by a Motorola Center for
Communications graduate fellowship.



9.
1]

[7]

8]

12

[13]

[14]

[15]

[16]

[17]

REFERENCES

M. Y. Becker and P. Sewell. Cassandra: Distributed
access control policies with tunable expressiveness. In
5th IEEE International Workshop on Policies for
Distributed Systems and Networks, 2004.

E. Bertino, E. Ferrari, and A. C. Squicciarini. X
-TNL: An XML-based language for trust negotiations.
In Proceedings of the 4th IEEE International
Workshop on Policies for Distributed Systems and
Networks (POLICY ’08), 2003.

E. Bertino, E. Ferrari, and A. C. Squicciarini.
Trust-X: A peer-to-peer framework for trust
establishment. IEEE Transactions on Knowledge and
Data Engineering, 16(7):827-842, Jul. 2004.

G. R. Blakley. Safeguarding cryptographic keys. In
AFIPS Conference Proceedings, volume 48, pages
313-317, 1979.

P. Bonatti and P. Samarati. Regulating service access
and information release on the web. In 7th ACM
Conference on Computer and Communications
Security, pages 134-143, 2000.

K. Borders, X. Zhao, and A. Prakash. CPOL:
High-performance policy evaluation. In Proceedings of
the 12th ACM Conference on Computer and
Communications Security (CCS 2005), Nov. 2005.

T. Dierks and C. Allen. The TLS protocol version 1.0.
IETF Request for Comments RFC-2246, Jan. 1999.
D. Dolev and A. C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory,
IT-29(2):198-208, Mar. 1983.

A. Herzberg, Y. Mass, J. Michaeli, D. Naor, and

Y. Ravid. Access control meets public key
infrastructure, or: assigning roles to strangers. In
IEEE Symposium on Security and Privacy, May 2000.
A. Hess, J. Holt, J. Jacobson, and K. E. Seamons.
Content-triggered trust negotiation. ACM
Transactions on Information System Security, 7(3),
Aug. 2004.

A. Hess, J. Jacobson, H. Mills, R. Wamsley, K. E.
Seamons, and B. Smith. Advanced client/server
authentication in TLS. In Network and Distributed
Systems Security Symposium, Feb. 2002.

Internet security research lab—projects. Web Page,
May 2005.
(http://isrl.cs.byu.edu/TrustBuilder.html).

H. Koshutanski and F. Massacci. Interactive access
control for web services. In 19th IFIP Information
Security Conference (SEC), pages 151-166, Aug. 2004.
H. Koshutanski and F. Massacci. Interactive trust
management and negotiation scheme. In 2nd
International Workshop on Formal Aspects in Security
and Trust (FAST), pages 139-152, Aug. 2004.

H. Koshutanski and F. Massacci. Interactive
credential negotiation for stateful business processes.
In 8rd International Conference on Trust Management
(iTrust), pages 257273, May 2005.

N. Li and J. Mitchell. RT: A role-based
trust-management framework. In Third DARPA
Information Survivability Conference and Exposition,
Apr. 2003.

J. Novotny, S. Tuecke, and V. Welch. An online
credential repository for the grid: MyProxy. In Tenth

24]

(25]

[26]

27]

28]

29]

(30]

(31]

International Symposium on High Performance
Distributed Computing (HPDC-10), Aug. 2001.

A. J. O’Donnell and H. Sethu. On achieving software
diversity for improved network security using
distributed coloring algorithms. In 11th ACM
Conference on Computer and Communications
Security, Oct. 2004.

L. Pearlman, V. Welch, 1. Foster, C. Kesselman, and
C. Tuecke. A community authorization service for
group collaboration. In IEEFE 3rd International
Workshop on Policies for Distributed Systems and
Networks, 2002.

T. Ryutov, L. Zhou, C. Neuman, T. Leithead, and

K. E. Seamons. Adaptive trust negotiation and access
control. In 10th ACM Symposium on Access Control
Models and Technologies, Jun. 2005.

J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 63(9):1278-1308, Sep. 1975.

A. Shamir. How to share a secret. Communications of
the ACM, 22(11):612-613, Nov. 1979.

L. Wang, D. Wijesekera, and S. Jajodia. A logic-based
framework for attribute based access control. In 2nd
ACM Workshop on Formal Methods in Security
Engineering (FMSE 2004), pages 45-55, Oct. 2004.
V. Welch, F. Siebenlist, 1. Foster, J. Bresnahan,

K. Czajkowski, J. Gawor, C. Kesselman, S. Meder,

L. Pearlman, and S. Tuecke. Security for grid services.
In Twelfth International Symposium on High
Performance Distributed Computing (HPDC-12), Jun.
2003.

W. H. Winsborough and N. Li. Towards practical
automated trust negotiation. In Third IEEE
International Workshop on Policies for Distributed
Systems and Networks, Jun. 2002.

W. H. Winsborough, K. E. Seamons, and V. E. Jones.
Automated trust negotiation. In DARPA Information
Survivability Conference and Exposition, Jan. 2000.
M. Winslett, T. Yu, K. E. Seamons, A. Hess,

J. Jacobson, R. Jarvis, B. Smith, and L. Yu. The
TrustBuilder architecture for trust negotiation. IEEE
Internet Computing, 6(6):30-37, Nov./Dec. 2002.

M. Winslett, C. Zhang, and P. A. Bonatti.
PeerAccess: A logic for distributed authorization. In
Proceedings of the 12th ACM Conference on Computer
and Communications Security (CCS 2005), Nov. 2005.
T. Ylonen and C. Lonvick. SSH transport layer
protocol. IETF Network Working Group
Internet-Draft, Mar. 2005.
(http://www.ietf.org/internet-drafts/
draft-ietf-secsh-transport-24.txt).

T. Yu, M. Winslett, and K. E. Seamons. Supporting
structured credentials and sensitive policies through
interoperable strategies for automated trust
negotiation. ACM Transactions on Information and
System Security, 6(1), Feb. 2003.

Y. Zhang, H. Vin, L. Alvisi, W. Lee, and S. K. Dao.
Heterogeneous networking: A new survivability
paradigm. In 2001 Workshop on New Security
Paradigms, pages 33—-39, 2001.



