

Modeling Methodologies for Power Grid Control System Evaluation

David Nicol, Dong (Kevin) Jin, Yuhao Zheng, Huaiyu Zhu, Lenhard Winterrowd

Goals

- To develop a high-fidelity, highly scalable simulation/emulation platform for security evaluation in power grid control networks.
 - To create a backbone at the core of the Smart Grid testbed at Illinois that connects various components.
 - To create models that support security assessment in a realistic large-scale setting.
 - o To create experimental designs and output analysis.

Fundamental Questions/Challenges

- How do we make simulation/emulation run sufficiently fast in largescale scenarios? How does one balance the trade-off between execution speed and behavioral accuracy?
- How do we mitigate the temporal error introduced by emulations running real application code?
- How can we seamlessly connect the testbed to various virtual and real power/network systems in the TCIPG lab?
- How do we approach experimental design in the "security for power grid context"? What are the metrics? How best do we explore the design space?

Research Plan

- · Develop S3F/S3FNet parallel network simulator.
- Implement virtual time systems on virtualization platforms.
 - \circ Virtualization yields high functional fidelity.
 - Virtual time system yields high temporal fidelity.
 - Integrate virtualization platforms to S3F/S3FNet. (Figure 1)
 - Simulation: models an extensive ensemble of background computation and communication
 - o Emulation: represents execution of critical software.
- Ongoing and remaining work
 - o Performance:
 - Acceleration: emulation lookahead.
 - Distributed version: run across multiple machines to support experiments of larger scale.
 - Features: support software-defined networking (OpenFlow) simulation and emulation.
 - Applications: security assessment in the smart grid context (e.g., defense mechanism against DDoS attack in AMI networks).

Figure 1: System Design Architecture

Research Results

- Developed and validated our testbed (S3F/S3FNet + OpenVZ).
 - o Global synchronization algorithm: integrate simulation & emulation.
 - o System temporal error: bounded by one timeslice (100us). (Figure 2)
 - Evaluation of application behavior:
 - Network-intensive (e.g., FTP, browser) / CPU-intensive applications.
 - Introduced error: virtual time system < OpenVZ platform.
- Demonstrated the usability of our testbed. (Figure 3)
 - o Model/simulate a DDoS attack on C12.22 protocol in AMI networks.
 - o Evaluate the existence and effectiveness of the attack. (Figure 4)

Figure 2: Packet Timestamps Through System Interfaces

Figure 3: C12.12 Trace Service DDoS Attack in AMI Network

Broader Impact

- Provide platform for assessing security vulnerabilities and proposed countermeasures in a realistic large-scale setting.
- Interact with other research/industrial resources that provide mediumscale real-device testbed and industrial power data.

Interaction with Other Projects

- Support use of testbed for security evaluations for other TCIPG projects.
- Connect our testbed with other systems in the TCIPG lab (e.g., Trilliant, RDTS, the smart meter testbed, etc.).

Future Efforts

 Develop power-grid-specific methodologies that specify what to measure, what set of experiments to run, and how to interpret results.

