TCIPG

Synchrophasor Data Quality on American Transmission Company's (ATC) Transmission System

Karl Reinhard, Kenta Kirihara, Andy Yoon, Jose Flores, Peter Sauer, and Hao Zhu

GOALS

- · Gain a fundamental understanding of phasor measurement challenges.
- · Characterize synchrophasor data quality (error, availability, reliability).
- Identify methods for detecting and correcting faulty synchrophasor data.
- Attribute defective synchrophasor data to synchrophasor data generation failure at the measurement site, losses in the data transmission process, or data-processing errors at intermediate or final data storage locations.

FUNDAMENTAL QUESTIONS/CHALLENGES

- · Smart grid initiatives envision very reliable synchrophasor data, but...
 - ...through early 2013, power system operators report **significant gaps** and **data quality & availability issues** with synchrophasor data.
- Anemic partnerships between industry and researchers to facilitate synchrophasor data "discovery" research, specifically regarding access to data with detailed context (e.g., system topology and operating state).
- Our study systematically characterizes synchrophasor data quality, easily recognizing and attributing faulty synchrophasor data.
- We are developing understood synchrophasor data signatures for system state changes to generate real-time alerts for operators, and enabling alerts to operators of unusual data patterns that may indicate malicious system attacks.

Identified Error Sources and Proposed Error Type Classifications ¹	
Level(s)	Error Type
1,2,3	data processing
1,2,3	data processing
2,3,4	data processing
1	digital signal processing
1	digital signal processing
1	equipment specification
1	equipment specification
1	equipment apecification
1	installation
1	installation
1	installation
1	measurement
2,3,4	network failure
2,3,4	network failure
1,2,3	PMU configuration
1	PMU standards
	Level(s) 1,2,3 1,2,3 2,3,4 1 1 1 1 1 1 1 1 1 1 2,3,4 2,3,4 1,2,3

¹ Drawn from Synchrophasor Data Quality activity collaboration with MISO in April 2012 to categorize synchrophasor error types

RESEARCH PLAN

Nominal Synchrophasor Data Network

ATC PMU Installations

- LEVEL 1 POINT OF MEASUREMENT
- LEVELS 2 & 3 NETWORK TRANSMISSION

LEVEL 4 - CONTROL CENTER / POINT of USE

- Build robust 3-way collaboration including ATC, Pacific Northwest National Laboratory (PNNL), and TCIPG.
- Renew/revise UIUC-ATC nondisclosure agreement to facilitate synchrophasor data and contextual information sharing.
- Receive, secure, and use archived ATC synchrophasor and context data.
- Cross-correlate data collected at each network level to characterize data losses (> 2 seconds) between point of measurement and point of use.
- Use PNNL-developed data tool (Situational Awareness and Alerting Report, SitAAR) to screen archived ATC data.

RESEARCH PLAN (CONT.)

- · ATC has proposed preliminary event analysis categories.
 - Unit trips and/or loss of significant loads.
 - System fault.
 - Capacitor bank failures.
 - Predecessor events to trips.
 - Imbalanced line phase angles differences (i.e., differing from 120°).
 - Etc...
- We will analyze synchrophasor data to ID and characterize signatures.
- We will also screen ATC data for known signatures and identify other unusual data streams for investigation.

RESEARCH RESULTS

- Kenta Kirihara set conditions for productive research (data identification, sharing, system context) as ATC intern, Summer '13.
- · Sample data from ATC have been received.
- Brett Amidan, Statistics Dept., PNNL, modified his "R-Project" based SitAAR (Situational Awareness and Alert Report) to accept and process ATC data.

Sample SitAAR Information: Line current data (left) and corresponding "Atypicality Score" (right)

BROADER IMPACT

- · ATC benefits:
 - Improved ATC system situational awareness.
- Rapid fault-condition location and identification \$\$ savings.
- Set the stage for future real-time PMU data applications.
- Enable system instability condition forecasting.
- Derived information will support the business cases for system improvements.
- PNNL benefits:
- Side-by-side interaction with TCIPG power systems expertise.
- SitAAR improvement recommendations from informed users.
- Apply insights gained to parallel research efforts.
- TCIPG gains access to synchrophasor data with contextual information to facilitate research addressing project goals.

INTERACTION WITH OTHER PROJECTS

- · Open Box Phasor Measurement Unit Development.
- Partner with PNNL (Brett Amidan) DOE/CERTS-sponsored synchrophasor data analysis projects.

FUTURE EFFORTS

- Pursue progressively comprehensive complex "Signature Discovery" research.
- · Refine statistical analysis methods and tools.
- · Categorize types of detection criteria.
- Develop real-time operations center alarms.