Design Overview

- Separate key and data transmission.
- Senders compute future public keys while signing with current secrets.
- Key update messages much less frequent than payload messages.
 - Allows traditional public key authentication (e.g., RSA) for key updates.
- Generated indices specify secrets to include in signature.
- Current protocols do not satisfy these requirements.
- Low key distribution overhead.
- Signature verification.
- Robust against attacks (dictionary, DoS, dropped packet, replay).

TV-OTS Overview

- Time divided into fixed-length epochs.
- Senders maintain a set of secret hash chains.
- Signatures are created with the HORs signature scheme, using the set of \(i \)-th hash chain secrets during epoch \(i \):
 - Messages hashed into multiple short bit strings (indices).
 - Generated indices specify secrets to include in signature.
 - Timestamp also included in signature.
- Signature verification.
 - Packet freshness verified.
 - Indices generated from message to determine expected index of each included secret's chain.
 - Each secret verified by hashing to recreate publicly known value.
 - Verified for the epoch of the signature timestamp.

Implementation Using GridStat

- Key publication initiated from TV-OTS security module.
 - Signed with RSA or DSA.
- Subscribers may use "partial authentication" if keys are unavailable.
- Periodic communication used to transmit current intermediate keys to active subscribers.

Current Challenges

- Large amounts of key material (hash chain secrets) require pre-computation.
 - Can be performed out of band.
- Public keys for new hash chains must be received before old chains are exhausted.

GOALS

High-Level

- Provide fast authentication for high-rate, low-latency sensor data streams.

Focused

- Create a deployment framework for data authentication using k-time signatures.
 - Pre-compute and distribute future key material in a continuous stream.
 - Efficiently transmit key material independently of message stream.
- Build framework for TV-OTS on GridStat.
- Validate through testing with DETERLab tested.

FUNDAMENTAL QUESTIONS/CHALLENGES

- Data authentication for Smart Grid applications ideally supports the following features:
 - Low latency.
 - Secure multicast.
 - Message independence.
- Current protocols do not satisfy these requirements.
- Our previous work shows TV-OTS has these features:
 - Low-latency signature generation and verification.
 - Flexibility to adjust security and performance.
 - Robust against attacks (dictionary, DoS, dropped packet, replay).

RESEARCH PLAN

- Design and develop deployment framework for TV-OTS.
 - Timing of transmitted key material must allow seamless transitions from each hash chain to the next.
 - Should be robust even without delivery guarantees.
 - Potentially distribute keys to late-joining receivers.
- Implement as part of GridStat.
- Deploy in DETERLab for robustness testing.

RESEARCH RESULTS

- Key update packets carry keys in small groups.
- Redundancy strategies protect against loss of keys during transit:
 - Option 1: Maximal overlap: small probability of many lost keys.
 - Option 2: Minimal overlap: high probability of a few lost keys.

BROADER IMPACT

- Addresses the framework problem faced by all k-time signature schemes.
- Fast authentication, applicable to a large class of big data applications.

INTERACTION WITH OTHER PROJECTS

- Continuing investigation of TV-OTS, originally a TCIP project.
 - Implemented as part of GridStat.
- Leverages GridStat’s deployment in DETERLab.

FUTURE EFFORTS

- Complete implementation and testing.
- Compare HORs signatures to others in the same family.
- Investigate potential real-world interest.

References:

TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID | TCIPG.ORG

UNIVERSITY OF ILLINOIS | DARTMOUTH COLLEGE | UC DAVIS | WASHINGTON STATE UNIVERSITY
FUNDING SUPPORT PROVIDED BY DOE-CE AND DHS S&T

Kelsey Cairns, Carl Hauser