Testbed-Driven Assessment: Experimental Validation of System Security and Reliability

Daniel Chen, Yongkyu An, Calogero Sollima, Zbigniew Kalbarczyk, and Ravishankar Iyer

GOALS
- Overall goal: Experimental evaluation of the security, reliability, and risk assessment of digital I&C systems in a nuclear power plant (NPP).
- Build a test-bed with real-time simulation of the NPP in conjunction with physical digital I&C components for realistic NPP operation simulation.
- Identify potential attack vectors, single points of failure, and common mode failures in the digital I&C systems.
- Develop fault injection and attack simulation tools to simulate various failures and attacks on the test-bed to demonstrate their potential impacts.
- Develop logics to analyze and report the impact of failures and attacks on the safety-critical digital I&C components of the NPP.

FUNDAMENTAL QUESTIONS/CHALLENGES
- Analog I&C systems:
 - Most were built in the 1970s and 1980s, with a life of 40 years.
 - Many original analog parts are no longer available.
 - Complex; require frequent maintenance.
 - High manpower to maintain.
- Digital I&C systems:
 - Can process and execute complex computation and control functions.
 - Provide more precise and accurate measurements.
 - Detect and respond faster and provide more accurate warning signals.
 - Require less manpower to operate.
- Gap
 - Modeling of digital I&C systems in NPP.
 - Relationship between cyber and physical element functionalities.
 - Safety and cyber-security assessment.

RESEARCH PLAN
- Build a test-bed for the purpose of security and resiliency evaluation of the digital I&C systems for the NPP.
- Develop a real-time simulation of the NPP in LabView.
- Connect the NPP simulation with a real digital I&C control system to simulate realistic NPP operation.
- Develop fault injection and attack simulation tools to simulate realistic failures and attack scenarios.
- Study the impact of simulated faults and attacks to help develop safety and security assessment procedures.

RESEARCH RESULTS
- A test-bed is being developed. It consists of a reactor model, a digital controller, and associated communication links.
- The digital controller (Tricon) has a Triple-Modular Redundant (TMR) architecture to ensure continuous availability of the controller.
- A real-time NPP simulator has been developed in LabVIEW using the point kinetics equation for the core, and models for a pressurizer and a pump.
- The NPP simulator and the TMR controller, with its associated application program, have been assembled, and communications between them have been established.

BROADER IMPACT
- Other potential uses of the test-bed include compliance tests of digital I&C systems for NPPs, stability analysis of the NPP test-bed connected to a simulator of the electric grid, and human machine interface and human factor engineering studies of newly developed control rooms for NPPs.

INTERACTION WITH OTHER PROJECTS
- This project is being done in collaboration with faculty and students from the Nuclear, Plasma, and Radiological Engineering department, and the test-bed is incorporated within the TCIPG test-bed.

FUTURE EFFORTS
- The next step is to focus on potential cyber-attacks on the digital I&C systems.
- Currently, we are reverse-engineering the communication protocol between the configuration software and the Tricon controller.
- If the communication is compromised, it could be used as an entry to create a common mode failure of the triple-modular redundant digital controller.