## Synchrophasor Data Quality on American Transmission Company's (ATC) Transmission System

Karl Reinhard, Kenta Kirihara, Yang Liu, Peter Sauer, and Hao Zhu

#### GOALS

- Gain a fundamental understanding of phasor measurement challenges.
- Characterize synchrophasor data quality (error, availability, reliability).
- Identify methods for **detecting** and **correcting** faulty synchrophasor data.
- Attribute defective synchrophasor data to synchrophasor data generation failure at the measurement site, losses in the data transmission process, or data-processing errors at intermediate or final data storage locations.

## FUNDAMENTAL QUESTIONS/CHALLENGES

- Smart grid initiatives envision very reliable synchrophasor data, but...
  - ...through early 2013, power system operators report (1) significant gaps and (2) data quality & availability issues with synchrophasor data.
- Inadequate partnerships between industry and researchers to facilitate synchrophasor data "discovery" research, specifically regarding access to data with detailed context (e.g., system topology and operating state).
- Our study systematically characterizes synchrophasor data quality, easily recognizing faulty synchrophasor data, and attributing the cause of faults.
- We are developing a list of synchrophasor data signatures for both known and unknown system state changes to generate a visualization with real-time alerts for operators, and enabling alerts to operators of unusual data patterns that may indicate malicious system attacks.

| Identified Error Sources and Proposed Error Type Classifications <sup>1</sup>                                                       |          |                           |
|-------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------|
| Error Source                                                                                                                        | Level(s) | Error Type                |
| Status code errors                                                                                                                  | 1,2,3    | data processing           |
| Data streams disordered / shifted in processing                                                                                     | 1,2,3    | data processing           |
| Loss of PDC configuration                                                                                                           | 2,3,4    | data processing           |
| Improperly configured PMUs (window length/windowing method)                                                                         | 1        | digital signal processing |
| Frequency calculation discrepancies (C37.118.2005)                                                                                  | 1        | digital signal processing |
| Quality of metering                                                                                                                 | 1        | equipment specification   |
| Accuracy issues (CT/PTs not properly rated for application)                                                                         | 1        | equipment specification   |
| Calculation uncertainty – vendor equipment operating differences                                                                    | 1        | equipment specification   |
| Metering locations separated by breakers                                                                                            | 1        | installation              |
| Meters not installed at recorded locations                                                                                          | 1        | installation              |
| PMU data streams not named as per system policies                                                                                   | 1        | installation              |
| Asynchronous local behaviors (e.g., DC bias injections during solar storm)                                                          | 1        | measurement               |
| Malformed network packets                                                                                                           | 2,3,4    | network failure           |
| Network data loss                                                                                                                   | 2,3,4    | network failure           |
| Mislabeled phasor data streams                                                                                                      | 1,2,3    | PMU configuration         |
| Differences between PMU manufacturer calculation approaches                                                                         | 1        | PMU standards             |
| <sup>1</sup> Drawn from Synchrophasor Data Quality activity collaboration with MISO in April 2012 to categorize synchrophasor error |          |                           |

**ATC PMU Installations** 

#### RESEARCH PLAN

# **Nominal Synchrophasor Data**



- POINT OF MEASUREMENT

**LEVEL 2&3 – NETWORK TRANSMISSION** 

**LEVEL 4 – CONTROL CENTER/POINT of USE** 

- Build robust 3-way collaboration including ATC, Pacific Northwest National Laboratory (PNNL), and TCIPG
- Renew/revise UIUC-ATC nondisclosure agreement to facilitate synchrophasor data and contextual information sharing
- Cross-correlate data collected at each network level to characterize data losses (> 2 seconds) between point of measurement and point of use
- Use PNNL-developed data tool (Situational Awareness and Alerting Report, SitAAR) to screen archived ATC data

### RESEARCH RESULTS (ANALYSIS)

- Sample data from ATC have been received and analyzed through the use of SitAAR (Situational Awareness and Alerting Report) developed by Brett Amidan (Statistics Dept., PNNL)
- Kenta Kirihara has interned at Hitachi America, Big Data Lab on Big Data Analysis
- Yang Liu (new undergraduate research assistant) has worked on creating a real-time FFT computation of the synchrophasor data



Sample SitAAR Information: Line current data (left) and corresponding "Atypicality Score" (right)

#### **Signature Identified:**

Figures below show two example signatures that were detected.

The two signatures both exhibit a sudden change in voltage, but are caused by different behaviors in the system. Being able to differentiate between the two shows the effectiveness of the detection method.



Atypical Events Captured: double capacitor bank switching (left) and tap changer switching (right)

## RESEARCH RESULTS (VISUALIZATION)

#### Synchrophasor Visualizer (SPV)\*

Java-based Application:

- Visualize Data
- Set alarms



## **FUTURE EFFORTS**

- Pursue progressively comprehensive complex "Signature Discovery" research
- Refine statistical analysis methods and tools
- Categorize types of detection criteria
- Develop real-time operations center alarms with visualization