TCIPG

Synchrophasor Data Quality (SDQ)

Open-Box Phasor Measurement Unit (PMU)

Bogdan Pinte, Michael Quinlan, Karl Reinhard, Peter W. Sauer

GOALS

- Build/test a 120 V open-box PMU to investigate measuring, processing, and synchronizing synchrophasor data
- Implement a Phasor Data Concentrator (PDC) integrating data from project PMUs placed on the local distribution network
- ID & detect SDQ issues associated with PMUs and synchrophasor data networks
- Seek ways to mitigate/remedy SDQ issues

FUNDAMENTAL QUESTIONS/CHALLENGES

- Substantially reducing **PMU** per-unit cost, currently exceeding \$1,000
- Current PMUs do not fully comply with established IEEE standards¹
- Improve **PMU** performance to meet current and next-generation synchrophasor measurement IEEE c37.118 standards
- Can synchrophasor data from a local distribution network provide cost effective benefit to the local power provider?

Conformance Test Results

¹ Mladen Kezunovic, "Verifying Interoperability and Application Performance of PMUs and PMU-enabled IEDs at the Device and System Level," North American Synchrophasor Phasor Initiative Working Group Meeting, 5 Jun 12, Denver, CO.

*PMU A-1 is an upgraded firmware of PMU A. P: Class P; M: Class M. TVE: total vector error; FE: frequency error; RFE: rate of change of frequency error; RT: response time; DT: delay time; MO: maximum over/under shoot S stands for "Satisfied"; F stands for "Failed".

©2012 Mladen Kezunovic. All rights reserved

RESEARCH PLAN

- Complete PMU integration with an uninterruptible power supply (UPS), enabling synchrophasor data collection during power interruptions
- Implement a distribution level 10-PMU synchrophasor data network using the industry standard "openPDC" application set
- Develop and implement new algorithms for next-generation PMUs
- Explore next-generation **PMU** device requirements

BROADER IMPACT

- Gain detailed understanding of PMU measurement challenges, supporting overall synchrophasor data quality activity research
- Reduce **PMU** per-unit cost to ~\$350
- Investigate low-cost PMUs benefit to distribution system research

RESEARCH RESULTS

- Wall voltage sampled at 10 kHz
- 10/20 (user selectable) synchrophasors generated per second.
- Time-stamped using GPS time reference having 1 µs accuracy
- PMU implemented on NI's myRIO-1900
- Data buffered and transferred hourly via FTP to a remote server
- PMU device powered during grid instabilities by internal UPS

SDQ Activity PMU components

Synchrophasor data streams capturing distribution system events:

Sample hour long unusual voltage data

Zoom-in on the red voltage dip

Frequency during the same hour

Zoom-in on the frequency dip

Virtual instrument logic, implemented with National Instruments hardware/software

INTERACTION WITH OTHER PROJECTS

- Apply the experience and insights gained to investigate synchrophasor data quality in real-world power systems
- Provide our PMU to the TCIPG testbed to assess GPS signal spoofing vulnerabilities

FUTURE EFFORTS

- Improve SDQ Activity **PMU** performance to meet IEEE c37.118 synchrophasor standards
- Deploy 10 **PMU** network on the local power distribution system
- Set up the synchrophasor data network including the "openPDC" phasor data concentrator
- · Apply knowledge gained to improve synchrophasor data quality