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INTRODUCTION TO THE PULSESS PROTOCOL

(PULSE-COUPLED SYNCHRONIZATION AND SCHEDULING)

RESEARCH RESULTS

BROADER IMPACT

• A decentralized self-healing radio protocol to support synchronization 

and scheduling can reduce vulnerabilities due to possible spoofing 

and jamming of GPS signals and other master/slave network 

synchronization protocols.

• It can make NICS scalable and easy to deploy because of reliable 

timing and scheduling of information flow.

FUTURE EFFORTS

• Complete the analysis of convergence speed.

• Study compatibility of PulseSS as a wake-up radio.

• Develop and test the PulseSS hardware implementation.

– Test with microcontroller running TinyOS.

– Test with FPGA, allowing direct access to the physical layer.
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Trustworthy Time-Synchronous Measurement Systems

PCO Timing Error Analysis

Lemma (Convergence fixed point)

Scheduling convergence of PulseSS for clustered networks 
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Synchronization Scheduling

Accurate network timing is required for 

Phasor Measurement Units (PMU) or other 

sensors.

• GPS spoofing is a threat.

• PTP & NTP:

– Not encrypted (man in the middle 

attack).

– Centralized (not scalable; central point 

of failure).

• PCO-Synchronization + Scheduling:

– Resilient to node failures.

• Self-healing (inspired by biological 

networks).

– Physical-layer secure signaling.

– Decentralized design → scalable.

– Accurate timing due to time of flight 

estimation.

– Application: monitor and control for the 

distribution grid.
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Simulation: IEEE 33 bus, 1 PC-PMU per branch. Power-line 

communication (band around 300kHz +/- 100kHz). Losses on the line 

40dB/km, average distance 100 m, coupling factor α=0.04, 170 iterations, 

transmission power 0-60dBm.

Mean squared error 0.023%@30dBm

Simulation: 4 clusters; each node has the same demand; 250 slots; 370 

iterations; transmission power 30dBm; other parameters as above.
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Define start and end coarse clocks (length L) driven by the same fine clock.

• Each time a clock reaches L, it sends a pulse.

• Cluster heads (CH) in range spread the pulse locally by acknowledging it.

• The CHs adjust their own fine clocks, taking into account the estimated 

signal traveling time  𝑡𝑣,𝑐, i.e., when receiving the pulse at time 𝑟𝑣
𝑠
.

• The refractory period 𝛿𝑟𝑒𝑓 is set based on the noise in time of arrival of a 

pulse:

Thus, the accuracy depends on the signal-to-noise ratio of the link and mean 

squared bandwidth.

• Each node that receives an acknowledgment updates its fine clock 

analogously.

• In addition, when a node is receiving a start pulse from its successor, it 

updates its coarse clock.

• The update depends on the positions of the nodes’ predecessors; the 

nodes’ demand for communication, 𝐷𝑣; and an intended guard space, 𝛿.
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size of circle = scheduled communication time

gray circles = cluster head, have no comm. time
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