Opening the GPS Blackbox! Yuting Ng and Grace Xingxin Gao

Matlab simulation of the GPS constellation at 2880 times faster than real time. uploaded onto Wikipedia in 2007 by El Pak

 Satellite navigation system

- Satellite navigation system
- Positioning coordinates on Earth

- Satellite navigation system
- Positioning coordinates on Earth
- How is that done?

• 2D example

•
$$(x_1 - x)^2 + (y_1 - y)^2 = r_1^2$$

 $(x_2 - x)^2 + (y_2 - y)^2 = r_2^2$

• Solve for (x, y)

- 2D example
- $(x_1 x)^2 + (y_1 y)^2 = r_1^2$ $(x_2 - x)^2 + (y_2 - y)^2 = r_2^2$
- How to generalize to 3D?

Satellite Signals

- Satellite position : broadcast message
- Satellite range : ranging signal

Satellite Signals

- Satellite position : broadcast message
- Satellite range : ranging signal

sv : **s**pace **v**ehicle; satellite; in the sky u : **u**ser; receiver; on the ground

Satellite Signals

- Satellite position : broadcast message
- Satellite range : ranging signal

sv : **s**pace **v**ehicle; satellite; in the sky u : **u**ser; receiver; on the ground

Timing Complexity

- most user receiver clocks are inaccurate
- 1ms time error ≈ 300,000m range error

Timing Complexity

- most user receiver clocks are inaccurate
- model timing errors:

Timing Complexity

$$\begin{split} c(\Delta \widetilde{t_{u}}) &= c((t_{u} + \delta t_{u}) - (t_{sv} + \delta t_{sv})) \\ & \text{measured} \\ \text{time difference} \\ c(\Delta \widetilde{t_{u}}) &= c(t_{u} - t_{sv}) + c\delta t_{u} - c\delta t_{sv} \\ \rho &= c(t_{u} - t_{sv}) + c\delta t_{u} \\ \rho &= c(t_{u} - t_{sv}) + c\delta t_{u} \\ & \text{pseudorange} \\ \end{split}$$

Equation Formulation

Equation Formulation

Iterative Expression

Iterative Expression

 $x = \hat{x} + \Delta x$

GPS Applications

GPS Applications

GPS Applications

Timing Requirements for Power Grid

- IEEE C37.118 Standard
 - timing agreement between PMU measurements
 < 31.8µs or < 26.5µs for 50Hz or 60Hz systems
- Precise Time Protocol (PTP) tool in IEEE 1588 gives ~µs precision
- GPS time synchronization ~ns precision

http://standards.ieee.org/findstds/standard/C37.118.1-2011.html

Timing Measurements

sampling synchronization

. . .

• Fault Locators (FL) with time tags

System Function	Measurement	Optimum	Time
		Accuracy	Sources
TW Fault Locator	300 m (line span)	1 μs	GPS
Relaying (line protection)	1000 m	3 μs	GPS
Phasor Measurement	+/- 0.1 degree	4.6 μs (60 Hz)	GPS
Networked Controls	+/- 0.1 degree	4.6 µs	GPS
Stability Controls (RAS,etc)	+/- 1 degree	46 µs	GPS
Event recording (DFR, etc)	Record compare	1 ms	GPS
Generation Control (AGC)	Freq, time error	10 ms	GPS, Net
Scheduling, reservation	Time of day	0.5 sec	GPS, Net

http://www.unoosa.org/pdf/icg/2010/ICG5/timing-session/01.pdf

Research Work

- Sensor fusion
- Measurement level integration
- Signal level integration
 - Multi-receiver position-information-aided vector tracking for robust timing of PMUs
 - Multi-receiver vector tracking with software defined radio in Python
- Vector correlator
- Swarm navigation test bench

Thank You!

Yuting Ng: yng5@illinois.edu Grace Xingxin Gao: gracegao@illinois.edu