
Parsers
Stefan Boesen, Dartmouth College

Parsers
• Parsers eat data and perform computation.

Parsers live in tons of stuff:

• web browsers

• executable loaders

• compilers

• scripting language interpreters

Parsers

• Eat data specified as a grammar

• Grammar is a set of rules that make up a language

• Parser should enforce those rules

• Only accept input that matches

On grammars…
• Often grammars are not specified.

• There’s still rules a parser must enforce.

• Those conditions are usually handwritten and
scattered throughout the code.

• Those conditions still make up a grammar, the
grammar is just implicit.

Motivation

x509
• x509 is the specification for SSL/TLS certificates

• It’s what gives you some level of security you’re
talking to paypal.com or amazon.com

• In 2010, researchers found that the specification
was vague in handling of NULL bytes

• Left up to the implementer

http://paypal.com
http://amazon.com

x509

• Turns out that’s not so great - could get a certificate
for “www.paypal.com\0www.badsite.com”

• Browser would stop reading at the \0 byte

• Certificate Authority (who signs certificates) would
recognize that it is a totally different website from
paypal.com and issue the cert.

http://www.paypal.com
http://0www.badsite.com
http://paypal.com

Strings

• Turns out the strings program parses ELF headers
if you give it an ELF file

• One mistake and it resulted in memory corruption

Android signature
verification

• Android packages (APKs) are zip archives, and
contain signatures

• 1st parser unpacks and verifies signature of first file
in zip with given filename

• 2nd parser runs second file in zip with given
filename

• Easy signature bypass

Word RTF
• This week Microsoft just released a patch to Word’s

parsing of RTF files.

• ACE

• I looked: .rtf spec - 500 pages.

• Search for “rtf” turns up 59 CVEs, two this year

• .docx OfficeOpen spec - 5000+ pages

Path to a Solution

• Parsing code often is scattered around the code.

• This makes it very hard to maintain.

• This makes it very hard to audit.

A new hope

• Syntax checking should be distinct from semantic
actions

• Recognizer and Processor

Sanitization

• Sanitization is blacklisting.

• PHP’s magic_quotes is blacklisting.

• “Imagine everything that isn’t an elephant”

Language Classes

• Regular, context-free, context-sensitive, recursively
enumerable

• The more context sensitive the language the more
complicated it is to parse.

• Offsets, back references, length fields all add
complexity to a language

Undecidable
• It’s undecidable if one CF (or worse) grammar

produces the same language as another CF
grammar

• There is no general purpose algorithm

• Should be as clear as possible exactly what you
are parsing

• Hammer code is easier to audit

Hammer Bleed
• Heartbleed resulted from not checking length

matched input

• h_length_value(h_uint16(), payload_byte)

• Creates a recognizer that only accepts input where
the rule is true

• Allows us to attach semantic actions cleanly

Keep in mind

• There’s no silver bullet

• Mistakes can happen in semantic actions as well

• We can at least make it easier to audit what a
parser expects

Keep in mind

• Hammer is a work in progress

• Some things can be tricky to parse

• That includes our very own DNP3

• Doing things with while() and if() isn’t going to cut it

Questions?

• stefan@cs.dartmouth.edu

• https://github.com/UpstandingHackers/hammer

mailto:stefan@cs.dartmouth.edu
https://github.com/UpstandingHackers/hammer

