Tru-Alarm: Trustworthiness Analysis of Sensor Network in Cyber Physical Systems

The Database and Info. Systems Lab. University of Illinois at Urbana-Champaign

Introduction

- A cyber-physical system (CPS) integrates physical devices with cyber components to form a integrated analytical system
- CPS = sensor network + data mining module
 - Traffic monitoring system
 - healthcare system
 - battlefield surveillance, etc
- Major Problem: Data reliability, especially the trustworthiness due to technology limitation and environment influences

CPS Sensors for Motion Detection

- The CPSs are deployed in different scenarios with various types of sensors
- In the scenario of motion detection, several types of sensors are used

Motivation Example: Motion Detector

- Battle Network: Deploy sensor network to detect hostile object and actions
- Problem: Sensors are easily damage or influenced by irrelevant activities – generate false

alarms

Problem Definition

- Given a CPS dataset including both alarming and normal data records, find out the trustworthy alarms – Focuses on the trustworthiness tasks for alarming records
- Formal Definition:
- Let $R = \{r(s_1, t_1), r(s_1, t_2), \ldots, r(s_m, t_n)\}$ be a CPS dataset, $R_a \subseteq R$ be the set of alarm records, given a trustworthy threshold δ_t , the Tru-Alarm's task is to find out the trustworthy alarms $r_a(s, t)$ with $\tau(r_a) >$

Challenges in Trustworthiness Analysis

- Huge size: A typical CPS contains hundreds of sensors and millions of data records
- Unreliable Data: Buonadonna et.al: 51% of the data are faulty; Szewzyk et.al: 60% of the data are faulty in a deployment in green lake
- No/Rare Training Sets: it is costly and error-prone to manually label the large dataset
- Conflicts of Sensors: Well deployed sensor network has reasonable redundancies.

Related Works: Spatial Similarity

- Assumption: The sensors that are spatially close to each other should report the similar readings (Krishnamachari et. al 2004)
- kNN Approach
 - □ Setup a neighbor threshold *k*
 - Judge the alarm trustworthiness by neighboring information
 - Suppose an alarm sensor s has I alarming neighbors in its kNN, if $l/k > \delta_t$, the alarm is trustworthiness, else it is not

Problem of Spatial Similarity based Approach
The edge sensor's alarms may be ignored
Hard to determine *k*

Related Works: Temporal Similarity

- Assumption: The sensors that reports alarms in the same time are likely to report together in the future (Xiao et. al 2007)
- Train a correlation model from historical data, test the alarms by such model
- Problem:
 - □ The noisy data are in a large portion (30% -- 50%)
 - The damaged sensors are likely to report false alarms for a long time
 - Some unreliable sensors and false alarms may have such strong correlations with real alarms

TruAlarm : Philosphy

- More trustworthy the alarms are, more accurately we can estimate the object locations
- More accurate the object positions are, more trustworthy the alarms are
- Observation: Mutual Enhancement
 - Estimate object locations from noisy data.
 - Use such objects to verify the alarms find out the false ones and trustworthy ones
 - Refine the object locations with trustable alarms

Build up links of objects and alarms

- Construct a bipartite graph of object (positions) and sensor (records)
- For each sensor s: the monitored objects O_s

For each object o: the monitoring sensors S_o

Task 1: Compute object trustworthiness

- For each object o: the monitoring sensors S_o
- Conditional trustworthiness: $\tau(r_a(s_i, t)|o)$
 - How likely the alarm $r_a(s_i, t)$ is caused by an object o
- o's trustworthiness τ(o) is the average of all its conditional alarm trustworthiness of alarms in

$$\tau(o) = \frac{\sum_{r_a \in R_a} \tau(r_a(s,t)|o)}{|S_o|}$$

• So we need to compute $\tau(r_a(s_i,t)|o)$?

Estimate $\tau(r_a(s_i, t) \mid o)$:

 It is determined by the coherence of other sensors' readings in the same monitoring sensor set of S_o

$$\tau(r_a(s_i, t)|o) = \frac{\sum\limits_{s_j \in S_o, s_j \neq s_i} \cosh(r(s_j, t), r_a(s_i, t))}{|S_o| - 1}$$

Estimate coherence of two sensor records

- $coh(r_a(s_i, t), r(s_j, t))$?
- The system should take count in both their reading differences and positions
- $r_i = f(dist(s_i, o), \Omega(o)),$
- Estimate $\Omega_i(o)$ by r_i : $\Omega_i(o) = f^1(dist(s_j, o), r_j)$
- $r_j = f(dist(s_j, o), \Omega_i(o)), -$ the expect value of r_j from r_j

Estimate coherence of two sensor records

Coherence coh(r_a(s_i, t), r(s_j, t)) is judged by the difference of the expected reading and real value

$$diff(r',r) = |r'(s_j,t) - r(s_j,t)|$$
$$coh(r_a(s_i,t),r(s_j,t)) = \begin{cases} 1 - \frac{diff(r',r)}{\sigma} & \text{if } diff(r',r) < \sigma\\ 0 & \text{otherwise} \end{cases}$$

σ is the standard deviation of monitoring sensor set S_o
 If s_i' reading is the same as expected value, the coherence score reaches the maximum of 1; if the difference is larger than σ, the score is set to 0

Compute object trustworthiness

- A low $\tau(r_a|o)$ indicates two possibilities:
 - r_a is a false alarm
 - \Box r_a is a true alarm, but it is not caused by object o
- In either case, object o is not likely to be a real one; a real object should cause alarms for all its monitoring sensors
- o's trustworthiness T(o) is the average of all its conditional alarm trustworthiness

$$\tau(o) = \frac{\sum_{r_a \in R_a} \tau(r_a(s,t)|o)}{|S_o|}$$

Task II: Compute alarm trustworthiness

- Even there is only one real object that causes the alarm, such alarm is still meaningful
- If an alarm has different conditional trustworthiness with different objects, we will take the maximum one as $\tau(r_a)$

$$\tau(r_a(s,t)) = \max(\tau(r_a(s,t)|o)), o \in O_s$$

Tru-Alarm Algorithm

- For each object o, first retrieves its related data records from the object-alarm graph, and computes the conditional alarm trustworthiness
- The object's trustworthiness is then computed as the average of its conditional alarm trustworthiness
- The system groups the conditional alarm trustworthiness by alarm and select the max one as $\tau(r_a)$

Running Example I

Running Example II

Trustworthiness (Group by Object)Trustworthin essTrustworthiness (Group by Sensor) $\tau(r(s_4,t) o_1)=0.3$ $\tau(o_1)=0.15$ $\tau(r(s_4,t) o_1)=0.3$ $\tau(r(s_5,t) o_2)=0.27$ $\tau(o_2)=0.09$ $\tau(r(s_5,t) o_2)=0.27$ $\tau(r(s_5,t) o_2)=0.27$ $\tau(o_3)=0.09$ $\tau(r(s_5,t) o_4)=0.89$ $\tau(r(s_8,t) o_3)=0.10$ $\tau(o_3)=0.05$ $\tau(r(s_7,t) o_4)=0.91$ $\tau(r(s_7,t) o_5)=0.66$ $\tau(r(s_7,t) o_5)=0.66$	Trustworthiness $\tau(r(s_4,t))=0.92$ $\tau(r(s_5,t))=0.89$
(Group by Object)ess(Group by Sensor) $\tau(r(s_4,t) o_1)=0.3$ $\tau(o_1)=0.15$ $\tau(r(s_4,t) o_1)=0.3$ $\tau(r(s_5,t) o_2)=0.27$ $\tau(o_2)=0.09$ $\tau(r(s_5,t) o_2)=0.27$ $\tau(r(s_5,t) o_2)=0.27$ $\tau(r(s_5,t) o_4)=0.89$ $\tau(r(s_8,t) o_3)=0.10$ $\tau(o_3)=0.05$ $\tau(r(s_7,t) o_4)=0.91$ $\tau(r(s_7,t) o_5)=0.66$ $\tau(r(s_7,t) o_5)=0.66$) $\tau(r(s_4,t))=0.92$ $\tau(r(s_5,t))=0.89$
$ \begin{array}{c ccccc} \tau(\mathbf{r}(\mathbf{s}_4, t) \mathbf{o}_1) = 0.3 & \tau(\mathbf{o}_1) = 0.15 & \tau(\mathbf{r}(\mathbf{s}_4, t) \mathbf{o}_1) = 0.3 \\ \hline \boldsymbol{\tau}(\mathbf{r}(\mathbf{s}_4, t) \mathbf{o}_2) = 0.27 & \tau(\mathbf{o}_2) = 0.09 & \tau(\mathbf{r}(\mathbf{s}_5, t) \mathbf{o}_2) = 0.27 \\ \hline \boldsymbol{\tau}(\mathbf{r}(\mathbf{s}_5, t) \mathbf{o}_2) = 0.27 & \tau(\mathbf{r}(\mathbf{s}_5, t) \mathbf{o}_4) = 0.89 \\ \hline \boldsymbol{\tau}(\mathbf{r}(\mathbf{s}_5, t) \mathbf{o}_5) = 0.43 & \tau(\mathbf{r}(\mathbf{s}_5, t) \mathbf{o}_5) = 0.43 \\ \hline \boldsymbol{\tau}(\mathbf{r}(\mathbf{s}_7, t) \mathbf{o}_5) = 0.66 & \tau(\mathbf{r}(\mathbf{s}_7, t) \mathbf{o}_5) = 0.66 \\ \hline \boldsymbol{\tau}(\mathbf{r}(\mathbf{s}_7, t) \mathbf{o}_7) = 0.59 \end{array} $	$\tau(r(s_4,t))=0.92$ $\tau(r(s_5,t))=0.89$
$\tau(\mathbf{r}(\mathbf{s}_{4},t) \mathbf{o}_{4})=0.92$ $\tau(\mathbf{r}(\mathbf{s}_{5},t) \mathbf{o}_{2})=0.27$ $\tau(\mathbf{o}_{2})=0.09$ $\tau(\mathbf{r}(\mathbf{s}_{5},t) \mathbf{o}_{2})=0.27$ $\tau(\mathbf{r}(\mathbf{s}_{5},t) \mathbf{o}_{2})=0.89$ $\tau(\mathbf{r}(\mathbf{s}_{5},t) \mathbf{o}_{5})=0.43$ $\tau(\mathbf{r}(\mathbf{s}_{8},t) \mathbf{o}_{3})=0.10$ $\tau(\mathbf{o}_{3})=0.05$ $\tau(\mathbf{r}(\mathbf{s}_{7},t) \mathbf{o}_{4})=0.91$ $\tau(\mathbf{r}(\mathbf{s}_{7},t) \mathbf{o}_{5})=0.66$ $\tau(\mathbf{r}(\mathbf{s}_{7},t) \mathbf{o}_{7})=0.59$	$\tau(r(s_5,t))=0.89$
$\begin{aligned} \tau(\mathbf{r}(\mathbf{s}_{5},t) \mathbf{o}_{2}) &= 0.27 & \tau(\mathbf{o}_{2}) &= 0.09 & \tau(\mathbf{r}(\mathbf{s}_{5},t) \mathbf{o}_{2}) &= 0.27 \\ \mathbf{\tau}(\mathbf{r}(\mathbf{s}_{5},t) \mathbf{o}_{4}) &= 0.89 \\ \tau(\mathbf{r}(\mathbf{s}_{5},t) \mathbf{o}_{5}) &= 0.43 \\ \tau(\mathbf{r}(\mathbf{s}_{8},t) \mathbf{o}_{3}) &= 0.10 & \tau(\mathbf{o}_{3}) &= 0.05 & \mathbf{\tau}(\mathbf{r}(\mathbf{s}_{7},t) \mathbf{o}_{4}) &= 0.91 \\ \tau(\mathbf{r}(\mathbf{s}_{7},t) \mathbf{o}_{5}) &= 0.66 \\ \tau(\mathbf{r}(\mathbf{s}_{7},t) \mathbf{o}_{7}) &= 0.59 \end{aligned}$	$\tau(r(s_5,t))=0.89$
$\begin{aligned} \tau(\mathbf{r}(\mathbf{s}_{5},t) \mathbf{o}_{4}) = 0.89 \\ \tau(\mathbf{r}(\mathbf{s}_{5},t) \mathbf{o}_{5}) = 0.43 \\ \tau(\mathbf{r}(\mathbf{s}_{5},t) \mathbf{o}_{5}) = 0.10 \\ \tau(\mathbf{o}_{3}) = 0.05 \\ \tau(\mathbf{r}(\mathbf{s}_{7},t) \mathbf{o}_{4}) = 0.91 \\ \tau(\mathbf{r}(\mathbf{s}_{7},t) \mathbf{o}_{5}) = 0.66 \\ \tau(\mathbf{r}(\mathbf{s}_{7},t) \mathbf{o}_{7}) = 0.59 \end{aligned}$	
$ \begin{aligned} \tau(\mathbf{r}(\mathbf{s}_{8},t) \mathbf{o}_{3}) &= 0.10 \\ \tau(\mathbf{v}_{3}) &= 0.05 \\ \tau(\mathbf{r}(\mathbf{s}_{7},t) \mathbf{o}_{4}) &= 0.91 \\ \tau(\mathbf{r}(\mathbf{s}_{7},t) \mathbf{o}_{5}) &= 0.66 \\ \tau(\mathbf{r}(\mathbf{s}_{7},t) \mathbf{o}_{7}) &= 0.59 \end{aligned} $	
$\tau(\mathbf{r}(\mathbf{s}_{8},\mathbf{t}) \mathbf{o}_{3}) = 0.10 \qquad \tau(\mathbf{o}_{3}) = 0.05 \qquad \tau(\mathbf{r}(\mathbf{s}_{7},\mathbf{t}) \mathbf{o}_{4}) = 0.91 \\ \tau(\mathbf{r}(\mathbf{s}_{7},\mathbf{t}) \mathbf{o}_{5}) = 0.66 \\ \tau(\mathbf{r}(\mathbf{s}_{7},\mathbf{t}) \mathbf{o}_{7}) = 0.59 \end{cases}$	(()) 0.01
$\tau(r(s_7,t) o_5)=0.66$ $\tau(r(s_7,t) o_7)=0.59$	$\tau(r(s_7,t))=0.91$
$\tau(r(s_7,t) o_7)=0.59$	
$\tau(r(s_7,t) o_8)=0.44$	
$\tau(r(s_4,t) o_4)=0.92$ $\tau(o_4)=0.86$ $\tau(r(s_8,t) o_4)=0.82$	$\tau(r(s_8,t))=0.82$
$\tau(r(s_5,t) o_4)=0.89$ $\tau(r(s_8,t) o_3)=0.10$	
$\tau(r(s_7,t) o_4)=0.91$	
$\tau(r(s_8,t) o_4)=0.82$	
$\tau(r(s_9,t) o_4)=0.76$	
$\tau(r(s_{15},t) o_9)=0.03$ $\tau(o_9)=0.01$ $\tau(r(s_{15},t) o_9)=0.03$	$\tau(r(s_{15},t))=0.04$
$\tau(\mathbf{r}(\mathbf{s}_{15},t) \mathbf{o}_{10})=0.04$ $\tau(\mathbf{o}_{10})=0.02$ $\tau(\mathbf{r}(\mathbf{s}_{15},t) \mathbf{o}_{10})=0.04$	4

C

Experiment Setup

- Synthetic a battle field with hundreds of sensors
- Objects (i.e., tanks and soliders) move across the battlefield
- Random false alarms added in

Dataset	Sensor#	Alarm#	True Alarm Rate	
D1	625	5247	71%	
D2	900	12390	46%	
D3	2500	39415	29%	
Parameter Settings				
Dataset: default D3				
Sampling Ratio 1%: default 4%				
<i>k</i> in kNN: 4 to 16				

Precision and Recall with kNN methods

Thank You Very Much!

Efficient Trustworthiness Analysis

- The time complexity of *Tru-Alarm* is linear in the number of objects
- The efficiency will be a problem when there are a large number of objects generated by the sampling algorithm
- Most objects turn out to be low trustworthy: In the running example, there are 10 objects but only one is trustworthy
- Can we prune the untrustworthy objects in advance?

Upperbound of $\tau(o)$

• Let *o* be an object, S_o be its monitoring set and Ra_o be the set of related alarms. $\tau(o)$'s upper-bound $\tau(o)$ = $|Ra_o|/|S_o|$

Improved Tru-alarm Algorithm

- Initialize the trustworthiness for each object and alarm
- For each object *o*, first compute its upper-bound, if it is less than δ_t, then prune it
- Retrieves o's related data records from the objectalarm graph, and computes the conditional alarm trustworthiness
- The object's trustworthiness is then computed as the average of its conditional alarm trustworthiness
- Groups the conditional alarm trustworthiness by alarm and select the max one as $\tau(r_a)$

Time Cost

