Dynamic Software Verification of Industrial Critical Control Systems

Sriharsha Etigowni
4N6 Research Group
Rutgers University
Introduction

• Power grids are old (50 years)

• Smarter power grids
 • more electronics
 • more sensors
 • more cyber parts

• Cyber attacks on power grids
 • cyberwar
 • shutting down facilities
 • targeted attacks
Motivation

• Industrial critical control systems malware’s
 • Blackenergy
 • Stuxnet

• Physical access
 • 450000 high voltage lines
 • thousands of controls

• Safety features required
 • reliability
 • resiliency

• Strong supervision on systems required
Damages in physical world

- Overloading transmissions lines
- Generating excessive power
- Generating insufficient power
- Generating out of sync (voltage angle)
Supervision schemes

• Static (before installing)
 • testing
 • verification and validation

• Dynamic (after installing)
 • monitoring on SCADA/HMI
Required schemes

• Continuous monitoring and supervision
• Live verification and validation
• Close to the system
Advantages

• Reduces intensity of attacks
 • continuously monitoring
 • close to the control system

• Reliable systems
 • reduce after installation attacks

• Reduces infrastructure damage
 • adhere to safety requirements
 • economic benefits
Conclusion

• Verification
 • runtime verification required
 • runtime supervision required
 • always operate in safe conditions

• Close to the plant
 • less damage to infrastructure since safety requirements known
 • less risk of spoofing data